6,661 research outputs found

    Non-commutative integrable systems on bb-symplectic manifolds

    Get PDF
    In this paper we study non-commutative integrable systems on bb-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering non-commutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and we prove an action-angle theorem for non-commutative integrable systems on a bb-symplectic manifold in a neighbourhood of a Liouville torus inside the critical set of the Poisson structure associated to the bb-symplectic structure

    Toric moment mappings and Riemannian structures

    Full text link
    Coadjoint orbits for the group SO(6) parametrize Riemannian G-reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian structures on the Iwasawa manifold.Comment: 25 pages, 14 figures; Geometriae Dedicata 2012, Toric moment mappings and Riemannian structures, available at http://www.springerlink.com/content/yn86k22mv18p8ku2

    Network Synthesis

    Get PDF
    Contains research objectives and reports on two research projects

    Network Synthesis

    Get PDF
    Contains research objectives

    Network Synthesis

    Get PDF
    Contains reports on two research projects

    Semiclassical almost isometry

    Full text link
    Let M be a complex projective manifold, and L an Hermitian ample line bundle on it. A fundamental theorem of Gang Tian, reproved and strengthened by Zelditch, implies that the Khaeler form of L can be recovered from the asymptotics of the projective embeddings associated to large tensor powers of L. More precisely, with the natural choice of metrics the projective embeddings associated to the full linear series |kL| are asymptotically symplectic, in the appropriate rescaled sense. In this article, we ask whether and how this result extends to the semiclassical setting. Specifically, we relate the Weinstein symplectic structure on a given isodrastic leaf of half-weighted Bohr-Sommerfeld Lagrangian submanifolds of M to the asymptotics of the the pull-back of the Fubini-Study form under the semiclassical projective maps constructed by Borthwick, Paul and Uribe.Comment: exposition improve

    Manipulation of single-photon states encoded in transverse spatial modes: possible and impossible tasks

    Get PDF
    Controlled generation and manipulation of photon states encoded in their spatial degrees of freedom is a crucial ingredient in many quantum information tasks exploiting higher-than-two dimensional encoding. Here, we prove the impossibility to arbitrarily modify dd-level state superpositions (quddits) for d>2d>2, encoded in the transverse modes of light, with optical components associated to the group of symplectic transforms (Gaussian operations). Surprisingly, we also provide an explicit construction of how non-Gaussian operations acting on mode subspaces do enable to overcome the limit d=2d=2. In addition, this set of operations realizes the full SU(3) algebra.Comment: Published in PR
    • …
    corecore