55 research outputs found

    Better Optimism By Bayes: Adaptive Planning with Rich Models

    Full text link
    The computational costs of inference and planning have confined Bayesian model-based reinforcement learning to one of two dismal fates: powerful Bayes-adaptive planning but only for simplistic models, or powerful, Bayesian non-parametric models but using simple, myopic planning strategies such as Thompson sampling. We ask whether it is feasible and truly beneficial to combine rich probabilistic models with a closer approximation to fully Bayesian planning. First, we use a collection of counterexamples to show formal problems with the over-optimism inherent in Thompson sampling. Then we leverage state-of-the-art techniques in efficient Bayes-adaptive planning and non-parametric Bayesian methods to perform qualitatively better than both existing conventional algorithms and Thompson sampling on two contextual bandit-like problems.Comment: 11 pages, 11 figure

    Deep Reinforcement Learning with Double Q-learning

    Full text link
    The popular Q-learning algorithm is known to overestimate action values under certain conditions. It was not previously known whether, in practice, such overestimations are common, whether they harm performance, and whether they can generally be prevented. In this paper, we answer all these questions affirmatively. In particular, we first show that the recent DQN algorithm, which combines Q-learning with a deep neural network, suffers from substantial overestimations in some games in the Atari 2600 domain. We then show that the idea behind the Double Q-learning algorithm, which was introduced in a tabular setting, can be generalized to work with large-scale function approximation. We propose a specific adaptation to the DQN algorithm and show that the resulting algorithm not only reduces the observed overestimations, as hypothesized, but that this also leads to much better performance on several games.Comment: AAAI 201

    Increasing the Action Gap: New Operators for Reinforcement Learning

    Full text link
    This paper introduces new optimality-preserving operators on Q-functions. We first describe an operator for tabular representations, the consistent Bellman operator, which incorporates a notion of local policy consistency. We show that this local consistency leads to an increase in the action gap at each state; increasing this gap, we argue, mitigates the undesirable effects of approximation and estimation errors on the induced greedy policies. This operator can also be applied to discretized continuous space and time problems, and we provide empirical results evidencing superior performance in this context. Extending the idea of a locally consistent operator, we then derive sufficient conditions for an operator to preserve optimality, leading to a family of operators which includes our consistent Bellman operator. As corollaries we provide a proof of optimality for Baird's advantage learning algorithm and derive other gap-increasing operators with interesting properties. We conclude with an empirical study on 60 Atari 2600 games illustrating the strong potential of these new operators

    Acceleration in Policy Optimization

    Full text link
    We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates. Leveraging the connection between policy iteration and policy gradient methods, we view policy optimization algorithms as iteratively solving a sequence of surrogate objectives, local lower bounds on the original objective. We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate accumulating errors from overshooting predictions or delayed responses to change. We use this shared lens to jointly express other well-known algorithms, including model-based policy improvement based on forward search, and optimistic meta-learning algorithms. We analyze properties of this formulation, and show connections to other accelerated optimization algorithms. Then, we design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task
    • …
    corecore