13 research outputs found

    Peripheral Neuropathy in Mouse Models of Diabetes

    No full text
    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc

    Repeated monitoring of corneal nerves by confocal microscopy as an index of peripheral neuropathy in type‐1 diabetic rodents and the effects of topical insulin

    No full text
    We developed a reliable imaging and quantitative analysis method for in vivo corneal confocal microscopy (CCM) in rodents and used it to determine whether models of type 1 diabetes replicate the depletion of corneal nerves reported in diabetic patients. Quantification was reproducible between observers and stable across repeated time points in two rat strains. Longitudinal studies were performed in normal and streptozotocin (STZ)-diabetic rats, with innervation of plantar paw skin quantified using standard histological methods after 40 weeks of diabetes. Diabetic rats showed an initial increase, then a gradual reduction in occupancy of nerves in the sub-basal plexus so that values were significantly lower at week 40 (68 ± 6%) than age-matched controls (80 ± 2%). No significant loss of stromal or intra-epidermal nerves was detected. In a separate study, insulin was applied daily to the eye of control and STZ-diabetic mice and this treatment prevented depletion of nerves of the sub-basal plexus. Longitudinal studies are viable in rodents using CCM and depletion of distal corneal nerves precedes detectable loss of epidermal nerves in the foot, suggesting that diabetic neuropathy is not length dependent. Loss of insulin-derived neurotrophic support may contribute to the pathogenesis of corneal nerve depletion in type 1 diabetes

    Topical delivery of muscarinic receptor antagonists prevents and reverses peripheral neuropathy in female diabetic mice

    No full text
    Muscarinic antagonists promote sensory neurite outgrowth in vitro and prevent and/or reverse multiple indices of peripheral neuropathy in rodent models of diabetes, chemotherapy-induced peripheral neuropathy, and HIV protein-induced neuropathy when delivered systemically. We measured plasma concentrations of the M1 receptor-selective muscarinic antagonist pirenzepine when delivered by subcutaneous injection, oral gavage, or topical application to the skin and investigated efficacy of topically delivered pirenzepine against indices of peripheral neuropathy in diabetic mice. Topical application of 2% pirenzepine to the paw resulted in plasma concentrations 6 hours postdelivery that approximated those previously shown to promote neurite outgrowth in vitro. Topical delivery of pirenzepine to the paw of mice with streptozotocin-induced diabetes dose-dependently (0.1%-10.0%) prevented tactile allodynia, thermal hypoalgesia, and loss of epidermal nerve fibers in the treated paw and attenuated large fiber motor nerve conduction slowing in the ipsilateral limb. Efficacy against some indices of neuropathy was also noted in the contralateral limb, indicating systemic effects following local treatment. Topical pirenzepine also reversed established paw heat hypoalgesia, whereas withdrawal of treatment resulted in a gradual decline in efficacy over 2-4 weeks. Efficacy of topical pirenzepine was muted when treatment was reduced from 5 to 3 or 1 day/wk. Similar local effects were noted with the nonselective muscarinic receptor antagonist atropine when applied either to the paw or to the eye. Topical delivery of muscarinic antagonists may serve as a practical therapeutic approach to treating diabetic and other peripheral neuropathies. SIGNIFICANCE STATEMENT: Muscarinic antagonist pirenzepine alleviates diabetic peripheral neuropathy when applied topically in mice

    Tau associated peripheral and central neurodegeneration: Identification of an early imaging marker for tauopathy

    No full text
    Pathological hyperphosphorylated tau is a key feature of Alzheimer’s disease (AD) and Frontotemporal dementia (FTD). Using transgenic mice overexpressing human non-mutated tau (htau mice), we assessed the contribution of tau to peripheral and central neurodegeneration. Indices of peripheral small and large fiber neuropathy and learning and memory performances were assessed at 3 and 6 months of age. Overexpression of human tau is associated with peripheral neuropathy at 6 months of age. Our study also provides evidence that non-mutated tau hyperphosphorylation plays a critical role in memory deficits. In addition, htau mice had reduced stromal corneal nerve length with preservation of sub-basal corneal nerves, consistent with a somatofugal degeneration. Corneal nerve degeneration occurred prior to any cognitive deficits and peripheral neuropathy. Stromal corneal nerve loss was observed in patients with FTD but not AD. Corneal confocal microscopy may be used to identify early neurodegeneration and differentiate FTD from AD
    corecore