75 research outputs found
FACTORS AFFECTING TRANSFER COMMUTER STUDENT SUCCESS: UNDERSTANDING STUDENT SENSE OF CONNECTEDNESS TO CAMPUS AND THE COLLEGIATE SUPPORT NETWORK
This paper presents two mixed-methods studies that explored sense of connectedness and the collegiate support network of transfer students at predominantly commuter institutions of higher education. Findings are relevant for student affairs practitioners and administrators at four-year, heavily commuter campuses and community colleges. The first study, a needs assessment, aimed to understand the experience of transfer students at a regional, four-year, commuter university. Interviews with campus administrators identified transfer student retention factors within the themes of student dependent, campus dependent, and jointly dependent. The student survey revealed no statistically significant differences between FTIAC and transfer students on connectedness or perceived support from parents/family, statistically significantly higher levels of perceived peer support among FTIAC students, and statistically significantly higher perceived faculty/staff support among transfer students. The findings, in part, did not align with the extant literature and warranted further inquiry. A follow-up study sought to understand if students’ perceptions of connectedness and support at predominantly commuter campuses might align more with community college students. The follow-up study was conducted at two four-year universities and a community college. Qualitative interviews and focus groups sought to understand how pre-transfer expectations of a four-year university experience compared to actual experiences of transfer students at a predominantly commuter institution. The study also sought to compare the experiences of community college to students at four-year, heavily commuter campuses. The study found no statistically significant differences on connectedness, parent/family support, faculty/staff support, or peer support when comparing community college students to the transfer students. Post hoc analyses evaluated differences based on student living arrangements and involvement yielding insights and implications for practitioners. Reassurance of worth, particularly from faculty/staff and parents/family had the greatest effect on students’ sense of connectedness
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
VERITAS: Status and Highlights
The VERITAS telescope array has been operating smoothly since 2007, and has
detected gamma-ray emission above 100 GeV from 40 astrophysical sources. These
include blazars, pulsar wind nebulae, supernova remnants, gamma-ray binary
systems, a starburst galaxy, a radio galaxy, the Crab pulsar, and gamma-ray
sources whose origin remains unidentified. In 2009, the array was reconfigured,
greatly improving the sensitivity. We summarize the current status of the
observatory, describe some of the scientific highlights since 2009, and outline
plans for the future.Comment: Presented at the 32nd ICRC, Beijing, 201
First measurement of quasi-elastic baryon production in muon anti-neutrino interactions in the MicroBooNE detector
We present the first measurement of the cross section of Cabibbo-suppressed
baryon production, using data collected with the MicroBooNE detector
when exposed to the neutrinos from the Main Injector beam at the Fermi National
Accelerator Laboratory. The data analyzed correspond to
protons on target of neutrino mode running and protons on
target of anti-neutrino mode running. An automated selection is combined with
hand scanning, with the former identifying five candidate production
events when the signal was unblinded, consistent with the GENIE prediction of
events. Several scanners were employed, selecting between three
and five events, compared with a prediction from a blinded Monte Carlo
simulation study of events. Restricting the phase space to only
include baryons that decay above MicroBooNE's detection thresholds,
we obtain a flux averaged cross section of
cmAr, where statistical and systematic uncertainties are combined
Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector
We present the first search for heavy neutral leptons (HNL) decaying into
or final states in a liquid-argon time projection
chamber using data collected with the MicroBooNE detector. The data were
recorded synchronously with the NuMI neutrino beam from Fermilab's Main
Injector corresponding to a total exposure of protons on
target. We set upper limits at the confidence level on the mixing
parameter in the mass ranges MeV for the channel and MeV for
the channel, assuming . These limits represent the most stringent constraints in the
mass range MeV and the first constraints from a direct
search for decays.Comment: Version as accepted by Physical Review Letters, some presentational
changes and updated references, no changes to result
First demonstration of timing resolution in the MicroBooNE liquid argon time projection chamber
MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline
(BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid
argon time projection chamber (LArTPC) is accompanied by a photon detection
system consisting of 32 photomultiplier tubes used to measure the argon
scintillation light and determine the timing of neutrino interactions. Analysis
techniques combining light signals and reconstructed tracks are applied to
achieve a neutrino interaction time resolution of .
The result obtained allows MicroBooNE to access the ns neutrino pulse structure
of the BNB for the first time. The timing resolution achieved will enable
significant enhancement of cosmic background rejection for all neutrino
analyses. Furthermore, the ns timing resolution opens new avenues to search for
long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in
future large LArTPC experiments, namely the SBN program and DUNE
First Measurement of Differential Cross Sections for Muon Neutrino Charged Current Interactions on Argon with a Two-proton Final State in the MicroBooNE Detector
We present the first measurement of differential cross sections for
charged-current muon neutrino interactions on argon with one muon, two protons,
and no pions in the final state. Such interactions leave the target nucleus in
a two-particle two-hole state; these states are of great interest, but
currently there is limited information about their production in
neutrino-nucleus interactions. Detailed investigations of the production of
two-particle two-hole states are vital to support upcoming experiments
exploring the nature of the neutrino, and the development of the liquid-argon
time-projection-chamber has made possible the isolation of such final states.
The opening angle between the two protons, the angle between the total proton
momentum and the muon, and the total transverse momentum of the final state
system are sensitive to the underlying physics processes as embodied in a
variety of models. Realistic initial-state momentum distributions are shown to
be important in reproducing the data.Comment: To be submitted to PR
Measurement of triple-differential inclusive muon-neutrino charged-current cross section on argon with the MicroBooNE detector
We report the first measurement of the differential cross section
for inclusive
muon-neutrino charged-current scattering on argon. This measurement utilizes
data from 6.4 protons on target of exposure collected using the
MicroBooNE liquid argon time projection chamber located along the Fermilab
Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The
mapping from reconstructed kinematics to truth quantities, particularly from
reconstructed to true neutrino energy, is validated by comparing the
distribution of reconstructed hadronic energy in data to that of the model
prediction in different muon scattering angle bins after conditional constraint
from the muon momentum distribution in data. The success of this validation
gives confidence that the missing energy in the MicroBooNE detector is
well-modeled in simulation, enabling the unfolding to a triple-differential
measurement over muon momentum, muon scattering angle, and neutrino energy. The
unfolded measurement covers an extensive phase space, providing a wealth of
information useful for future liquid argon time projection chamber experiments
measuring neutrino oscillations. Comparisons against a number of commonly used
model predictions are included and their performance in different parts of the
available phase-space is discussed
Differential cross section measurement of charged current interactions without final-state pions in MicroBooNE
In this letter we present the first measurements of an exclusive electron
neutrino cross section with the MicroBooNE experiment using data from the
Booster Neutrino Beamline at Fermilab. These measurements are made for a
selection of charged-current electron neutrinos without final-state pions.
Differential cross sections are extracted in energy and angle with respect to
the beam for the electron and the leading proton. The differential cross
section as a function of proton energy is measured using events with protons
both above and below the visibility threshold. This is done by including a
separate selection of electron neutrino events without reconstructed proton
candidates in addition to those with proton candidates. Results are compared to
the predictions from several modern generators, and we find the data agrees
well with these models. The data shows best agreement, as quantified by
-value, with the generators that predict a lower overall cross section, such
as GENIE v3 and NuWro
- …