51 research outputs found

    An experimental research on blended learning in the development of listening and speaking skills in China

    No full text
    The experimental research conducted for this study is based on a blended learning(BL) approach to the teaching of English as a Foreign Language (EFL) in China. The purpose of the study was to investigate the effectiveness of a blended learning approach aimed at improving students’ listening and speaking skills. 59 students from the Huazhong University of Science and Technology (HUST) represented the experimental group, and another 59 students from the Wuhan Institute of Physical Education (WIPE) made up the control group. Over a two-year period, the results of four standardised English language examinations were collected and statistically analysed by using the Statistical Package for Social Sciences 17.0 (SPSS1 17.0). The results of the research indicate that students’ listening and speaking skills did indeed improve. Compared to the traditional method of teaching, the blended learning approach appears to combine the best of face-to-face teaching with the best of online learning. The approach is effective in promoting teacher and student initiative and in enhancing learner autonomy

    Experimental Study to Develop Writing skills through Blended Learning in the Times of Internet+

    No full text
    Blended learning emphasizes the role of computer‐based technologies in learning how to develop writing skills. Through BL, learners not only control the learning speed, but also do not suffer from the time restrictions of classroom interaction. Teaching and learning take place in both on-campus and online setting and various ways are offered to communicate with each other, either synchronously or asynchronously. Compared to paper teaching documents, the electronic resources are easier for the teachers to keep in order. On the other hand, blended learning leaves a significant role for students’ classroom learning. The effect of BL in developing writing skills has been done through a half-year empirical study. Over the period of half a year, the students’ writing skills have been tracked through interviews, learning contracts and teacher observations. The empirical application illustrates the features and advantages of BL approach

    Cetuximab Enhanced the Cytotoxic Activity of Immune Cells during Treatment of Colorectal Cancer

    No full text
    Background/Aims: Cetuximab is a chimeric IgG1 monoclonal antibody which targets the extracellular domain of epidermal growth factor receptor. This antibody is widely used for colorectal cancer (CRC) treatment but its influence on the immune system is incompletely understood. Methods: The immune influence of cetuximab therapy in CRC patients was investigated by analyzing peripheral blood mononuclear cells using flow cytometry. We undertook in vitro cytotoxicity and cytokine-profile assays to ascertain the immunomodulatory effect of cetuximab treatment. Results: The number of CD3+ T, CD8+ T, and natural killer (NK) cells was increased significantly and T-regulatory cells reduced gradually after cetuximab treatment. Percentage of CD4+ T, natural killer T (NKT)-like, invariant NKT, and dendritic cells was similar between baseline patients and cetuximab patients. Expression of CD137 on NK and CD8+ T cells was increased significantly after 4 weeks of cetuximab therapy. In vitro cetuximab treatment markedly increased expression of CD137 and CD107a on NK and CD8+ T cells. Cetuximab treatment promoted the cytotoxic activity of NK and CD8+ T cells against tumor cells. Conclusion: Cetuximab treatment promotes activation of the immune response but alleviates immunosuppression: this might be the underlying anti-CRC effect of cetuximab

    Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways

    No full text
    Background/Aims: Regular physical exercise can enhance resistance to many microbial infections. However, little is known about the mechanism underlying the changes in the immune system induced by regular exercise. Methods: We recruited members of a university badminton club as the regular exercise (RE) group and healthy sedentary students as the sedentary control (SC) group. We investigated the distribution of peripheral blood mononuclear cell (PBMC) subsets and functions in the two groups. Results: There were no significant differences in plasma cytokine levels between the RE and SC groups in the true resting state. However, enhanced levels of IFN-γ, TNF-α, IL-6, IFN-α and IL-12 were secreted by PBMCs in the RE group following microbial antigen stimulation, when compared to the SC group. In contrast, the levels of TNF-α and IL-6 secreted by PBMC in the RE group were suppressed compared with those in SC group following non-microbial antigen stimulation (concanavalin A or α-galactosylceramide). Furthermore, PBMC expression of TLR2, TLR7 and MyD88 was significantly increased in the RE group in response to microbial antigen stimulation. Conclusion: Regular exercise enhances immune cell activation in response to pathogenic stimulation leading to enhanced cytokine production mediated via the TLR signaling pathways

    Analysis of the Repertoire Features of TCR Beta Chain CDR3 in Human by High-Throughput Sequencing

    No full text
    Background/Aims: To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors, collectively referred to as the TCR repertoire. Assessment of the repertoire features of TCR is vital for us to deeper understand of immune behaviour and immune response. Methods: In this study, we used a combination of multiplex-PCR, Illumina sequencing and IMGT (ImMunoGeneTics)/HighV-QUEST for a standardized analysis of the repertoire features of TCR beta chain in the blood of healthy individuals, including the repertoire features of public TCR complementarity-determining regions (CDR3) sequences, highly expanded clones, long TCR CDR3 sequences. Results: We found that public CDR3 sequences and high-frequency sequences had the same characteristics, both of them had fewer nucleotide additions and shorter CDR3 length, which were closer to the germline sequence. Moreover, our studies provided evidence that public amino acid sequences are produced by multiple nucleotide sequences. Notably, there was skewed VDJ segment usage in long CDR3 sequences, the expression levels of 10 TRβV segments, 7 TRβJ segments and 2 TRβD segments were significantly different in the long CDR3 sequences compared to the short CDR3 sequences. Moreover, we identified that extensive N additions and increase of D gene usage contributing to TCR CDR3 length, and observed there was distinct usage frequency of amino acids in long CDR3 sequences compared to the short CDR3 sequences. Conclusions: Some repertoire features could be observed in the public sequences, highly abundance clones, and long TCR CDR3 sequences, which might be helpful for further study of immune behavior and immune response

    DataSheet1_An anoikis-based signature for predicting prognosis in hepatocellular carcinoma with machine learning.pdf

    No full text
    Background: Hepatocellular carcinoma (HCC) is a common malignancy with high mortality worldwide. Despite advancements in diagnosis and treatment in recent years, there is still an urgent unmet need to explore the underlying mechanisms and novel prognostic markers. Anoikis has received considerable attention because of its involvement in the progression of human malignancies. However, the potential mechanism of anoikis-related genes (ANRGs) involvement in HCC progression remains unclear.Methods: We use comprehensive bioinformatics analyses to determine the expression profile of ANRGs and their prognostic implications in HCC. Next, a risk score model was established by least absolute shrinkage and selection operator (Lasso) Cox regression analysis. Then, the prognostic value of the risk score in HCC and its correlation with clinical characteristics of HCC patients were further explored. Additionally, machine learning was utilized to identify the outstanding ANRGs to the risk score. Finally, the protein expression of DAP3 was examined on a tissue microarray (TMA), and the potential mechanisms of DAP3 in HCC was explored.Results: ANRGs were dysregulated in HCC, with a low frequency of somatic mutations and associated with prognosis of HCC patients. Then, nine ANRGs were selected to construct a risk score signature based on the LASSO model. The signature presented a strong ability of risk stratification and prediction for overall survival in HCC patients.Additionally, high risk scores were closely correlated with unfavorable clinical features such as advanced pathological stage, poor histological differentiation and vascular invasion. Moreover, The XGBoost algorithm verified that DAP3 was an important risk score contributor. Further immunohistochemistry determined the elevated expression of DAP3 in HCC tissues compared with nontumor tissues. Finally, functional analyses showed that DAP3 may promote HCC progression through multiple cancer-related pathways and suppress immune infiltration.Conclusion: In conclusion, the anoikis-based signature can be utilized as a novel prognostic biomarker for HCC, and DAP3 may play an important role in the development and progression of HCC.</p

    Table2_An anoikis-based signature for predicting prognosis in hepatocellular carcinoma with machine learning.xlsx

    No full text
    Background: Hepatocellular carcinoma (HCC) is a common malignancy with high mortality worldwide. Despite advancements in diagnosis and treatment in recent years, there is still an urgent unmet need to explore the underlying mechanisms and novel prognostic markers. Anoikis has received considerable attention because of its involvement in the progression of human malignancies. However, the potential mechanism of anoikis-related genes (ANRGs) involvement in HCC progression remains unclear.Methods: We use comprehensive bioinformatics analyses to determine the expression profile of ANRGs and their prognostic implications in HCC. Next, a risk score model was established by least absolute shrinkage and selection operator (Lasso) Cox regression analysis. Then, the prognostic value of the risk score in HCC and its correlation with clinical characteristics of HCC patients were further explored. Additionally, machine learning was utilized to identify the outstanding ANRGs to the risk score. Finally, the protein expression of DAP3 was examined on a tissue microarray (TMA), and the potential mechanisms of DAP3 in HCC was explored.Results: ANRGs were dysregulated in HCC, with a low frequency of somatic mutations and associated with prognosis of HCC patients. Then, nine ANRGs were selected to construct a risk score signature based on the LASSO model. The signature presented a strong ability of risk stratification and prediction for overall survival in HCC patients.Additionally, high risk scores were closely correlated with unfavorable clinical features such as advanced pathological stage, poor histological differentiation and vascular invasion. Moreover, The XGBoost algorithm verified that DAP3 was an important risk score contributor. Further immunohistochemistry determined the elevated expression of DAP3 in HCC tissues compared with nontumor tissues. Finally, functional analyses showed that DAP3 may promote HCC progression through multiple cancer-related pathways and suppress immune infiltration.Conclusion: In conclusion, the anoikis-based signature can be utilized as a novel prognostic biomarker for HCC, and DAP3 may play an important role in the development and progression of HCC.</p
    corecore