4,248 research outputs found

    On Red Culture Education under the Background of Youth Education in Higher Vocational Colleges

    Get PDF
    Red culture is a unique socioculture formed by the Chinese Communist Party in the revolutionary practice, and plays the role of propagating positive energy in the course of China’s development. Under the background of youth education in higher vocational colleges, the development of red culture education can promote the development of Ideological and political education in higher vocational colleges, cultivate the socialist core values of students, and continue the struggle spirit of the Chinese nation, so that students in China become ideal and ambitious new young people in the new era to strive for the early realization of the great rejuvenation of the Chinese nation. To this end, this article aims to study the education of red culture under the background of youth education in higher vocational colleges, and hope to provide some suggestions for the development of Ideological and political education in higher vocational colleges.     Keywords: higher vocational colleges, youth education background, red culture educatio

    Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks

    Get PDF
    In this work, we study energy-aware real-time scheduling of a set of sporadic Directed Acyclic Graph (DAG) tasks with implicit deadlines. While meeting all real-time constraints, we try to identify the best task allocation and execution pattern such that the average power consumption of the whole platform is minimized. To the best of our knowledge, this is the first work that addresses the power consumption issue in scheduling multiple DAG tasks on multi-cores and allows intra-task processor sharing. We first adapt the decomposition-based framework for federated scheduling and propose an energy-sub-optimal scheduler. Then we derive an approximation algorithm to identify processors to be merged together for further improvements in energy-efficiency and to prove the bound of the approximation ratio. We perform a simulation study to demonstrate the effectiveness and efficiency of the proposed scheduling. The simulation results show that our algorithms achieve an energy saving of 27% to 41% compared to existing DAG task schedulers

    Mutual-Guided Dynamic Network for Image Fusion

    Full text link
    Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction, i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: https://github.com/Guanys-dar/MGDN.Comment: ACMMM 2023 accepte
    • …
    corecore