316 research outputs found

    Navigation Using Inertial Sensors

    Get PDF
    This tutorial provides an introduction to navigation using inertial sensors, explaining the underlying principles. Topics covered include accelerometer and gyro technology and their characteristics, strapdown inertial navigation, attitude determination, integration and alignment, zero updates, motion constraints, pedestrian dead reckoning using step detection, and fault detection

    Shadow Matching: A New GNSS Positioning Technique for Urban Canyons

    Get PDF
    The Global Positioning System (GPS) is unreliable in dense urban areas, known as urban canyons, which have tall buildings or narrow streets. This is because the buildings block the signals from many of the satellites. Combining UPS with other Global Navigation Satellite Systems (GNSS) significantly increases the availability of direct line-of-sight signals. Modelling is used to demonstrate that, although this will enable accurate positioning along the direction of the street, the positioning accuracy in the cross-street direction will be poor because the unobstructed satellite signals travel along the street, rather than across it. A novel solution to this problem is to use 3D building models to improve cross-track positioning accuracy in urban canyons by predicting which satellites are visible from different locations and comparing this with the measured satellite visibility to determine position. Modelling is used to show that this shadow matching technique has the potential to achieve metre-order cross-street positioning in urban canyons. The issues to be addressed in developing a robust and practical shadow matching positioning system are then discussed and solutions proposed

    NLOS GPS signal detection using a dual-polarisation antenna

    Get PDF
    The reception of indirect signals, either in the form of non-line-of-sight (NLOS) reception or multipath interference, is a major cause of GNSS position errors in urban environments. We explore the potential of using dual-polarisation antenna technology for detecting and mitigating the reception of NLOS signals and severe multipath interference. The new technique computes the value of the carrier-power-to-noise-density (C/N0) measurements from left-hand circular polarised outputs subtracted from the right-hand circular polarised C/N0 counterpart. If this quality is negative, NLOS signal reception is assumed. If the C/N0 difference is positive, but falls below a threshold based on its lower bound in an open-sky environment, severe multipath interference is assumed. Results from two experiments are presented. Open-field testing was first performed to characterise the antenna behaviour and determine a suitable multipath detection threshold. The techniques were then tested in a dense urban area. Using the new method, two signals in the urban data were identified as NLOS-only reception during the occupation period at one station, while the majority of the remaining signals present were subject to a mixture of NLOS reception and severe multipath interference. The point positioning results were dramatically improved by excluding the detected NLOS measurements. The new technique is suited to a wide range of static ground applications based on our results

    Context Determination for Adaptive Navigation using Multiple Sensors on a Smartphone

    Get PDF
    Navigation and positioning is inherently dependent on the context, which comprises both the operating environment and the behaviour of the host vehicle or user. No single technique is capable of providing reliable and accurate positioning in all contexts. In order to operate reliably across different contexts, a multi-sensor navigation system is required to detect its operating context and reconfigure the techniques accordingly. This paper aims to determine the behavioural and environmental contexts together, building the foundation of a context-adaptive navigation system. Both behavioural and environmental context detection results are presented. A hierarchical behavioural recognition scheme is proposed, within which the broad classes of human activities and vehicle motions are detected using measurements from accelerometers, gyroscopes, magnetometers and the barometer on a smartphone by decision trees (DT) and Relevance Vector Machines (RVM). The detection results are further improved by behavioural connectivity. Environmental contexts (e.g., indoor and outdoor) are detected from GNSS measurements using a hidden Markov model. The paper also investigates context association in order to further improve the reliability of context determination. Practical test results demonstrate improvements of environment detection in context determination

    Improving Environment Detection by Behaviour Association for Context Adaptive Navigation

    Get PDF
    Navigation and positioning systems depend on both the operating environment and the behavior of the host vehicle or user. The environment determines the type and quality of radio signals available for positioning, and the behavior can contribute additional information to the navigation solution. In order to operate across different contexts, a context‐adaptive navigation solution is required to detect the operating contexts and adopt different positioning techniques accordingly. This paper focuses on determining both environments and behaviors from smartphone sensors, serving for a context‐adaptive navigation system. Behavioral contexts cover both human activities and vehicle motions. The performance of behavior recognition in this paper is improved by feature selection and a connectivity‐dependent filter. Environmental contexts are detected from global navigation satellite system (GNSS) measurements. They are detected by using a probabilistic support vector machine, followed by a hidden Markov model for time‐domain filtering. The paper further investigates how behaviors can assist within the processes of environment detection. Finally, the proposed context‐determination algorithms are tested in a series of multicontext scenarios, showing that the proposed context association mechanism can effectively improve the accuracy of environment detection to more than 95% for pedestrian and more than 90% for vehicle

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Urban Positioning on a Smartphone: Real-time Shadow Matching Using GNSS and 3D City Models

    Get PDF
    The performance of global navigation satellite system (GNSS) user equipment in urban canyons is particularly poor in the cross-street direction. This is because more signals are blocked by buildings in the cross-street direction than along the street [1]. To address this problem, shadow matching has been proposed to improve cross-street positioning from street-level to lane-level (meters-level) accuracy using 3D city models. This is a new positioning method that uses the city model to predict which satellites are visible from different locations and then compares this with the measured satellite visibility to determine position [2]. In previous work, we have demonstrated shadow matching using GPS and GLONASS data recorded using a geodetic GNSS receiver in Central London, achieving a cross-street position accuracy within 5m 89% of the time [3]. This paper describes the first real-time implementation of shadow matching on a smartphone capable of receiving both GPS and GLONASS. The typical processing time for the system to provide a solution was between 1 and 2 seconds. On average, the cross-street position accuracy from shadow matching was a factor of four better than the phone’s conventional GNSS position solution. A number of groups have also used 3D city models to predict and, in some cases, correct non-line-of-sight reception [4-6]. However, to our knowledge, this paper reports the first ever demonstration of any 3D-model-aided GNSS positioning technique in real time, as opposed to using recorded GNSS data. When it comes to real-time positioning on a smartphone, various obstacles exist including lower-grade GNSS receivers, limited availability of computational power, memory, and battery power. To tackle these problems, in this work, an efficient smartphone-based shadow-matching positioning system was designed. The system was then implemented in an app (i.e. application or software) on the Android operating system, the most common operating system for smartphones. The app has been developed in Java using Eclipse, a software development environment (SDE). It was built on Standard Android platform 4.0.3, using the Android Application programming interface (API) to retrieve information from the GNSS chip. The new positioning system does not require any additional hardware or real-time rendering of 3D scenes. Instead, a grid of building boundaries is computed in advance and stored within the phone. This grid could also be downloaded from the network on demand. Shadow matching is therefore both power-efficient and cost-effective. Experimental testing was performed in Central London using a Samsung Galaxy S3 smartphone. This receives both GPS and GLONASS satellites and has an assisted GNSS (AGNSS) capability. A 3D city model of the Aldgate area of central London, supplied by ZMapping Ltd, was used. Four experimental locations with different building topologies were selected on Fenchurch Street, a dense urban area. Using the Android app developed in this work, real-time shadow-matching positioning was performed over 6 minutes at each site with a new position solution computed every 5 seconds using both GPS and GLONASS observations were used for real-time positioning. The measurement data was also recorded at 1-second intervals for later analysis. Various criteria are applied to access the new system and compare it with the conventional GNSS positioning results. The experimental results show that the proposed system outperforms the conventional GNSS positioning solution, reducing the mean absolute deviation of the cross-street positioning error from 14.81 m to 3.33 m, with a 77.5 percentage reduction. The feasibility of deploying the new system on a larger scale is also discussed from three perspectives: the availability of 3D city models and satellite information, data storage and transfer requirements, and demand from applications. This meters-level across-street accuracy in urban areas benefits a variety of applications from Intelligent Transportation Systems (ITS) and land navigation systems for automated lane identification to step-by-step guidance for the visually impaired and for tourists, location-based advertisement (LBA) for targeting suitable consumers and many other location-based services (LBS). The system is also expandable to work with Galileo and Beidou (Compass) in the future, with potentially improved performance. In the future, the shadow-matching system can be implemented on a smartphone, a PND, or other consumer-grade navigation device, as part of an intelligent positioning system [7], along with height-aided conventional GNSS positioning, and potentially other technologies, such as Wi-Fi and inertial sensors to give the best overall positioning performance. / References [1] Wang, L., Groves, P. D. & Ziebart, M. Multi-constellation GNSS Performance Evaluation for Urban Canyons Using Large Virtual Reality City Models. Journal of Navigation, July 2012. [2] Groves, P. D. 2011. Shadow Matching: A New GNSS Positioning Technique for Urban Canyons The Journal of Navigation, 64, pp417-430. [3] Wang, L., Groves, P. D. & Ziebart, M. K. GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 3D City Model with Optimized Visibility Prediction Scoring. ION GNSS 2012. [4] Obst, M., Bauer, S. and Wanielik, G. Urban Multipath Detection and mitigation with Dynamic 3D Maps for Reliable Land Vehicle Localization. IEEE/ION PLANS 2012. [5] Peyraud, S., Bétaille, D., Renault, S., Ortiz, M., Mougel, F., Meizel, D. and Peyret, F. (2013) About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm. Sensors, Vol. 13, 2013, 829?847. [6] Bourdeau, A., M. Sahmoudi, and J.-Y. Tourneret, “Tight Integration of GNSS and a 3D City Model for Robust Positioning in Urban Canyons,” Proc. ION GNSS 2012. [7] Groves, P. D., Jiang, Z., Wang, L. & Ziebart, M. Intelligent Urban Positioning using Multi-Constellation GNSS with 3D Mapping and NLOS Signal Detection. ION GNSS 2012
    corecore