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ABSTRACT 

The poor performance of global navigation satellite system 
(GNSS) user equipment in urban canyons is a well-known 
problem, particularly in the cross-street direction. However, 
the accuracy in the cross-street direction is of great 
importance in Intelligent Transportation Systems (ITS) and 
land navigation systems for lane identification, in location-
based advertisement (LBA) for targeting suitable 
consumers and many other location-based services (LBS).  

To tackle this problem, a new approach, shadow matching, 
has been proposed, assisted by knowledge derived from 
3D models of buildings. In this work, a new smartphone-
based positioning system using 3D city models is designed. 
The system is then implemented in an application (app, or 
software) on the Android operating system. With a number 
of optimizations developed, for the first time, a 
demonstration is performed on a smartphone using real-
time GPS and GLONASS data stream. The computational 
efficiency of the system is thus verified, showing its 
potential for larger scale deployment. Experiments were 
conducted at four different locations, providing a statistical 
performance analysis of the new system. Analysis was 
conducted to evaluate the performance of the system. The 
experimental results show that the proposed system 
outperforms the conventional GNSS positioning solution 
provided by GNSS chips on smartphones, reducing the 
cross-street positioning error by 69.2 % on average.  

It should be noted that the system does not require any 
additional hardware or real-time rendering of 3D scenes. It 
is therefore power-efficient and cost-effective. The system 
is also expandable to work with Beidou (Compass) and 
Galileo in the future, with potentially improved 
performance. 
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1. INTRODUCTION 

The poor performance of global navigation satellite 
systems (GNSS) user equipment in urban canyons in terms 
of both accuracy and solution availability is a well-known 
problem (Wang et al., 2012b). This problem arises where 
there are tall buildings or narrow streets. The direct line-
of-sight (LOS) signals from many, sometimes most, of the 
satellites are blocked. Without direct signals from four or 
more satellites, an accurate position solution cannot be 
determined. Sometimes, a degraded position solution may 
be obtained by making use of signals that can only be 
received by reflection off a building; these are known as 
non-line-of-sight (NLOS) signals (Ercek et al., 2005, 
Viandier et al., 2008). 

As well as affecting the number of available GNSS signals, 
an urban canyon also affects the geometry of positioning 
solutions, which causes lower accuracy in the cross-street 
direction. This is because signals with lines of sight going 
across the street are much more likely to be blocked by 



buildings than signals with lines of sight going along the 
street. This is illustrated by Figure 1. As a result, the signal 
geometry, and hence the positioning accuracy, is much 
better along the direction of the street than across the street 
(Groves, 2011).  

Figure 1: Satellite signals with lines of sight (LOS) going 
across the street are much more likely to be blocked by 
buildings than signals with LOS going along the street. 

 

Figure 2: The shadow-matching concept: using direct 
signal reception to localise position (Groves, (2011)). 

However, the accuracy in the cross-street direction can be 
of great importance to daily life. Vehicle lane detection for 
lane guidance systems and intelligent transportation 
systems (ITS), location-based advertising (LBA), 
augmented-reality applications, and step-by-step guidance 
for the visually impaired and for tourists all require 
sufficient positioning accuracy to perform their functions 
(You et al., 2008, Broll et al., 2008, Rashid et al., 2005).  

For improving navigation performance in highly built-up 
areas, a variety of navigation sensors has been used to 
enhance or augment GNSS. Road vehicles typically 
combine GNSS with odometers and map-matching 
algorithms, while pedestrian navigation users may 
combine GNSS with cell phone signals, Wi-Fi and/or dead 
reckoning using inertial sensors, magnetic compass and 
barometric altimeter (Groves, 2013a, Farrell, 2008). A 
selection of these sensors can help mobile phone users to 
recognize motion states, consequently context-adaptive 
algorithms can be applied to improve the positioning 
performance (Susi et al., 2013, Pei et al., 2013, Groves, 
2013a, Kamisaka et al., 2011). While these approaches 
improve the availability and robustness of the position 
solution, they do not particularly improve the cross-street 
accuracy. 

As 3D building models are becoming more accurate and 
widely available (Bradbury et al., 2007), they are treated as 
a new data source for urban navigation and are used to 
improve positioning performance in urban canyons. Some 
research utilises 3D city models to detect and eliminate 
non-line-of-sight (NLOS) or multipath errors, in order to 
improve GNSS positioning accuracy (Peyraud et al., 2013, 
Groves et al., 2012a, Bourdeau and Sahmoudi, 2012, Obst 
et al., 2012, Peyret et al., 2011, Bradbury et al., 2007). 
Another line of research that utilises 3D city models for 
navigation is the evaluation of GNSS positioning 
performance with 3D ray tracing or ray intersection 
techniques (Ji et al., 2010, Kim et al., 2009, Kleijer et al., 
2009 , Bradbury, 2007, Suh and Shibasaki, 2007, Wang et 
al., 2012b, Costa, 2011). This line of research 
demonstrates the practical potential of shadow matching, 
the technique focused in this work. Furthermore, 3D city 
models are also applied to enhance map matching (Piñana-
Díaz et al., 2012) and image matching in land vehicle 
navigation (Cappelle et al., 2011). 

Shadow matching has been proposed to improve the cross-
street accuracy using GNSS, assisted by knowledge 
derived from 3D city models (Groves, 2011, Tiberius and 
Verbree, 2004, Yozevitch, 2012). Due to obstruction by 
buildings in urban canyons, signal reception from GNSS 
satellites is highly dependent on position within a street. 
The expectation for which signals are available can be 
predicted using a 3D city model. Consequently, by 
determining whether a direct signal is being received from 
a given satellite, the user can localize their position to 
within one of two areas of the street. Figure 2 illustrates 
this. With a number of satellites contributed to this process, 
a positioning solution can be provided.  

The work of this paper is based on the first author’s 
doctoral research since 2010, when the shadow matching 
principle was proposed at UCL (Groves, 2011). The 
performance of GNSS in urban canyons was first 
evaluated and verified by 3D city models (Wang et al., 
2012b). Then, a preliminary shadow-matching algorithm 
was developed and demonstrated the ability to distinguish 
the pavement from a vehicle lane, and identify the correct 
side of the street using real-world GPS and GLONASS 
measurements (Wang et al., 2011, Groves et al., 2012b). 
Furthermore, a new scheme has been proposed that takes 
account of the effects of satellite signal diffraction and 
reflection by weighting the scores based on diffraction 
modelling and the signal-to-noise ratio (SNR). This was 
shown to improve the navigation solution of geodetic GPS 
and GLONASS receivers (Wang et al., 2012a, Wang et al., 
2013a). Recently, GNSS data collected on a smartphone 
was processed using a shadow-matching algorithm on a 
PC; however, comprehensive analysis is due to be 
conducted and the computation efficiency needs to be 
addressed (Wang et al., 2013b).  

No direct signal 
received: user is 
here 

Direct signal 
received: user is 
here 

Direct signal 
received: user is 
here 

No direct signal 
received: user is 
here 



Shadow 
Matching
 Server

Server

Building
Boundary

Initial GNSS 
Position

Building 
Boundary 

Data

Smartphone user

GLONASS

Galileo
Compass

GPS

A Smartphone with the 
Shadow Matching App

 

Figure 3: The overall system architecture design 

 

Figure 4:  A workflow of the improved shadow-matching 
algorithm.  

 

Figure 5: An example of a building boundary as azimuth-
elevation pairs in a sky plot. (The centre of the plot 
correspond to a 90º elevation or normal incidence) 

This paper presents a significant development of shadow 
matching – a smartphone-based shadow-matching system 
that works in real time. The motivation of the work in this 
paper comes from two perspectives. First, most potential 
applications of shadow matching use consumer-grade 
GNSS user equipment, whereas previous shadow matching 
algorithms were mainly tested using geodetic GNSS 
receivers (Wang et al., 2012a). The consumer-grade GNSS 
receivers normally cost much less, and can be subject to 
worse signal reception, more severe multipath reception 
and stronger non-line of sight (NLOS) reception due to the 
low gain and linear polarization of consumer-grade GNSS 

antennae. These differences can degrade shadow-matching 
performance. Thus, research is required to investigate 
shadow-matching performance using consumer-grade 
GNSS receivers with smartphone antennae. Furthermore, 
smartphones and personal navigation devices (PND) 
normally have much less computational capability in 
comparison with a desktop computer or laptop, whereas 
the existing algorithm has only been run on personal 
computers. Its computational efficiency has not previously 
been tested. Thus, optimization of the shadow matching 
system to make it suitable for smartphone-grade devices is 
worth investigation. The low-grade antenna and low-
computational power of smartphones are the two obstacles. 
They are also the scope of this paper, which proposes and 
implements a smartphone-based system, aiming at meters-
level cross-street accuracy in urban canyons, and assess 
the real-time positioning performance. 

A summary of the design of the real-time shadow-
matching system and its optimizations in pre-processing 
building boundaries are presented in Section 2. Section 3 
then describes the details of application development on 
the Android operating system. An assessment of real-time 
experiments is presented in Section 4, with different 
criteria applied to compare the performance between the 
conventional GNSS navigation solution and the shadow-
matching system solution. Section 5 discusses the 
feasibility of larger scale implementation. Finally, in 
Section 6, conclusions are drawn. 

2. SYSTEM DESIGN AND OPTIMIZATION FOR 
REAL-TIME APPLICATIONS 

This section introduces the design of a new real-time 
shadow-matching positioning system, with explanations of 
key design choices. Section 2.1 introduces the overall 
architecture of the new positioning system. The shadow-
matching algorithm is then described. Algorithm 
improvements, which are essential to real-time efficiency, 
are given in Section 2.2.  

2.1 System Architecture Design for a Real-time 
Positioning System with Shadow Matching 

In a full implementation of a shadow-matching system, 
there is a server interacting with a smartphone user. The 
smartphone first sends a positioning request with an initial 
GNSS position to the server. The server then gathers the 
building boundary data that assists in shadow-matching 
positioning (to be explained in more detail in Section 2.2) 
according to the user’s initial position and sends them back 
to the user. Finally, the smartphone performs the shadow-
matching algorithm and acquires a positioning solution. 
The overall architecture of the shadow-matching system is 
illustrated in Figure 3.  

In terms of algorithm design, shadow matching has two 
phases – the offline phase (the preparation step) and the 
online phase (the real-time positioning), which are 
executed in four steps, as illustrated in Figure 4 in red. An 
off-line phase is conducted to generate a grid of building 



boundaries. At the beginning of the online phase, the 
search area is defined for the shadow-matching position 
solution, based on the initial GNSS position. For the 
second step, the satellite visibility at each grid position is 
predicted using the building boundaries generated from the 
3D city model. After that, the difference between 
prediction and observation is evaluated using a scoring 
scheme, providing a score for each grid point in search 
area. Finally, the shadow-matching positioning solution is 
generated by a modified k-nearest-neighbours algorithm, 
which averages the grid points with the highest scores. 
Each of the steps is described in more detail below. 

A full implementation would also incorporate context 
detection to determine whether the user is in an indoor, 
urban or open environment (GROVES, 2013b). The 
shadow-matching algorithm would then only be called in 
urban contexts.   

Step 0: Generate a Grid of Building Boundaries (off-
line phase) 

In the off-line phase, building boundaries on a grid of 
outdoor locations are generated. The boundaries are from a 
GNSS user’s perspective, with the buildings edge 
determined for each azimuth (from 0 to 360°) as a series of 
elevation angles. The results from this step show where the 
building edges are located within an azimuth-elevation sky 
plot. Figure 5 shows an example of a building boundary 
computed from a candidate user location. Once the 
building boundary has been computed, it may be stored 
and reused in the online phase to predict satellite visibility 
by simply comparing the elevation of a satellite with the 
elevation of the building boundary at the same azimuth. A 
software toolkit for generating the grid of building 
boundaries from a 3D city model was developed in C++.  

Step 1: Determine the Search Area for Candidate 
Positions from the Building Boundaries on a Grid  

Before the first step of the shadow-matching algorithm, an 
initial GNSS position is required. In an urban environment, 
the GNSS accuracy is often poor (Misra and Enge, 2010). 
Therefore, it is important to minimize the impact of non-
line-of-sight reception and multipath interference on the 
position solution (Jiang and Groves, 2012, Jiang et al., 
2011, GROVES et al., 2013, Groves and Jiang, 2013). 
Other available positioning methods (e.g. Wi-Fi or Cell 
network solution) may be introduced in this step when the 
blockage is too great in urban canyons for GNSS to give a 
solution or when GNSS gives less accurate positioning 
than other positioning methods (e.g. Wi-Fi).  

The first step defines the search area in which the 
candidate positions are located for the shadow-matching 
position solution. A search area is defined based on the 
initial position. A simple implementation can be to draw a 
fixed-radius circle centred at the initialized position, but 
more advanced algorithms can be developed to use the 
knowledge of satellite geometry to optimize the search 
area. 

For instance, if the initial position is generated using a 
conventional GNSS solution, the signal geometry, and 
hence the positioning accuracy, will be much better along 
the direction of the street than across the street. This is 
because an urban canyon affects the geometry of the 
available GNSS signals. Signals with lines of sight going 
across the street are much more likely to be blocked by 
buildings than signals with lines of sight going along the 
street. Therefore, the conventional GNSS solution has a 
lower accuracy across the street and a higher accuracy 
down the street, which is complementary to the shadow-
matching algorithm. 

Thus, the down-street component of a conventional GNSS 
solution can be used as a reference to define the search 
area and thus generate candidate user positions with a 
greater range of possibilities in the cross-street direction. 
This is illustrated by the two green mobile phones besides 
the initial GNSS solution of the user in Figure 1, with the 
green area representing the search area centred at the initial 
position. A more advanced shadow-matching algorithm 
would vary the size of its search area based on an 
assessment of the quality of the received satellite signals. 

Step 2: Predict Satellite Visibility at Each Candidate 
Position 

In the second step, performed at each candidate position, 
each satellite’s elevation is compared with the building 
boundary elevation at the same azimuth. The satellite is 
predicted to be visible if the satellite is above the building 
boundary. With pre-computed building boundaries, this 
step can be computationally efficient. 

Step 3: Satellite Visibility Scoring  

For the third step, the similarity between predictions and 
observations, of the satellite visibility, is evaluated. The 
candidate positions with the better matches will then be 
weighted higher in the shadow-matching positioning 
solution. There are two stages for calculating a score for a 
candidate position. Firstly, each satellite above the 
elevation mask angle is given a score, calculated based on 
the predicted and observed visibility. Secondly, the 
position scoring function, evaluates the overall degree of 
match between predicted and observed satellite visibility 
for each possible user position. This is illustrated in (1).  

 
௣݂௢௦(݆) = ෍ ௦݂௔௧(݅, ݆, ܵܵ)

௡

௜ୀଵ

 (1) 

where ௣݂௢௦(݆)  is the position score for grid point j ; 

௦݂௔௧(݅, ݆, ܵܵ) is the score of satellite i at grid point j using 
the scoring scheme SS. ܵܵ  is the scoring scheme which 
defines a score based on predicted and observed satellite 
visibility. ݊ is the number of satellites above the elevation 
mask angle.  



By the end of this step, each candidate position should 
have a score to represent the degree to which it matches 
the observed satellite visibility, and thus how likely it is 
that each candidate position is close to the true location. 

Different scoring schemes can be applied at this stage. 
Figure 6 shows the 2 by 2 scoring scheme used in this 
work. This scheme only considers direct line-of-sight 
(LOS) signals. Other schemes can take into account 
diffraction and reflection effects. The difference between 
various scoring schemes is out of the scope of this paper. 
More details can be found in previous work (Wang et al., 
2012b). 

Step 4: Positioning Using Scores at Candidate Positions 

The last step of the shadow-matching algorithm is to 
generate a positioning solution using the scores from each 
candidate position. Shadow matching uses the pattern-
matching positioning method (Groves, 2013a). As the 
process of Wi-Fi fingerprinting is similar to this process, 
the algorithms used in Wi-Fi fingerprinting may be 
investigated for their potential implementation in shadow 
matching. Potential algorithms include, but are not limited 
to, k-weighted nearest neighbours, the Bayesian inference 
received signal strength (RSS) location method, and the 
particle filter. 

In this work, a method similar to k-nearest neighbours is 
used to estimate the location, averaging the grid positions 
with the highest scores. With the current scoring system, 
scores take integer values. Therefore, several grid points 
typically share the highest score. The points in the grid 
with highest scores are regarded as nearest neighbours. For 
L nearest neighbours, the location estimate is obtained 
using (2): 

 
Northing =

1
ܮ ∙
෍݊௜; 						Easting =

1
ܮ ∙
෍݁௜

௅

௜ୀଵ

௅

௜ୀଵ

 (2) 

where ni and ei are, respectively, the northing and easting 
coordinates of the ith high-scoring candidate positions. 
Note that L varies from epoch to epoch depending on how 
many candidate positions share the highest score. 

 

 

Figure 6: The 2-by-2 scoring scheme giving the score for 
each satellite in shadow matching 

 

Figure 7: The process that generates the grid of building 
boundaries 

 

Figure 8: The optimization used in building boundary 
generation by refining city models according to location of 

a candidate user position and an azimuth of interest. 
(Aerial perspective, the figure is not drawn to scale) 

3. APPLICATION IMPROVEMENTS FOR REAL-
TIME EFFICIENCY 

The main strategy for improving real-time efficiency is 
that the building boundaries are pre-computed and stored 
in a server. From the perspective of mobile devices, the 
system trades time and computing power to a one-off 
processing requirement at the server side. Specifically, this 
is achieved by representing the 3D model in a specially 
designed form - building boundaries at each candidate 
position. The logic behind this strategy is that the vast 
amount of data in a 3D city model is not of direct interest 
to the shadow-matching algorithm. The interest is where 
the edges of the buildings are located from a user’s 
perspective. Thus, utilizing this knowledge, only the 
building boundaries at each candidate position are 
abstracted from the 3D model. This method saves real-



time computational load because individual mobile devices 
do not need to compute the building boundaries on the fly. 
Instead, they can simply request building boundaries at a 
certain range of locations, or cache a desired region. 

Using stored building boundaries, fewer than fifty 
comparison and addition operations are required to 
calculate an overall shadow matching score for one 
candidate position with two GNSS constellations. 
Therefore, shadow matching may be performed in real 
time on a mobile device with several hundred candidate 
positions, where necessary.  

The optimized process in the off-line phase can be broken 
into four steps. In the beginning, a horizontal grid of points 
with 3-meter spacing, covering the 3D city model area, is 
generated. The height is set to be 1.5 meters above the 
terrain height measured in the 3D city model. Second, a 
pre-processing step is developed to eliminate indoor points 
from the generated grid in the first step, because the 
current shadow-matching algorithm is designed to work 
outdoors. Outdoor points are distinguished from indoor 
ones by testing whether the elevation angle of the sky at 
each azimuth is 90 degrees. Further details of the 
algorithms testing line-of-sight visibility can be found in a 
previous paper (Wang et al., 2012b). Thirdly, buildings 
that are unlikely to block satellite signals are eliminated 
from the search area, based on checks of their relative 
location from the candidate position of interest. Details are 
explained further for this optimization below. Finally, the 
lowest elevation angle for a visible sky at each azimuth is 
tested to determine the building boundary at each outdoor 
candidate position. Figure 7 illustrates these four process 
of building boundary generation.  

In order to improve the efficiency of the offline phase, in 
the third step, only buildings that are close to the candidate 
position and in the direction of interest are tested. Figure 8 
illustrates this search area. It should be noted that the 
parameters used in this example are manually selected 
based on knowledge of the 3D city model used in this 
work. Appropriate changes should be made if using 
another type of city model. Without optimization, it takes 
an estimated 6 days to perform the process at a grid of 
candidate positions with 3-meter spacing across a 500 m 
by 500 m area, using a computer with a CPU speed of 2.67 
GHz. After optimization, the time required to generate 
building boundaries at the same grid of points was reduced 
to 10 hours, a 93% reduction in time compared to the 
original algorithm. 

4. APPLICATION DEVELOPMENT ON ANDROID 
DEVICES 

An application (app) that runs on the Android operating 
system has been developed. This section briefly introduces 
the smartphone and the operating system involved in this 
work, with more detailed descriptions of the application 
development. 

4.1 The smartphone and the Android operating 
system 

The smartphone used in this work is a Samsung Galaxy S3 
smartphone. It receives both GPS and GLONASS satellites 
with Assisted-GPS (A-GPS or AGPS) capability. The 
smartphone runs on the Android operating system, a 
Linux-based operating system primarily for mobile devices. 
It is one of the most common smartphone systems. 
According to the figures released from analyst firm 
International Data Corporation (IDC), Android smartphone 
shipments account for 75% of all smartphones shipped 
worldwide in the third quarter 2012 (ICD).  

4.2 App development 

The app has been developed in Java using Eclipse, a 
software development environment (SDE). The app was 
built on Standard Android platform 4.0.3, using the 
Android Application programming interface (API) to 
retrieve information from the GNSS chip. In this 
implementation, the building boundary data is stored on 
the SD card. 

The Android operation system listens to the real-time 
GNSS messages from the GNSS chip, interprets GNSS 
information from them, and provides the information to 
app developers through the Android API. The public 
interface GpsStatus.Listener outputs, in real-time, the 
information provided by the GNSS chip, and contains a 
number of attributes. The useful attributes for this 
application include the azimuth, elevation and SNR of 
GPS and GLONASS satellites in view. The latest location 
determined by the GNSS chip is output by the public 
interface LocationListener. This data feeds into the shadow 
matching positioning engine, together with the building 
boundary data stored on an SD card. The new positioning 
engine then computes user’s position based on the 
conventional GNSS solution. Finally, the positioning 
results are displayed on maps using the Google Maps API. 
The flowchart of the app is illustrated in Figure 9. 

 

Figure 9: The flowchart of the real-time application 
running on Android devices. 



  

Figure 10: Part of the 3D model of London used in the 
experiments 

 

Figure 11: Photos taken at the experimental sites, showing 
the urban environments in experiments G2.  
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Figure 12: An aerial view of the experimental site on 
Fenchurch Street: 3D city model (above) and satellite 

image (below)  

 

Figure 13: A photo of the real-time experiment using the 
developed shadow-matching application on the 

smartphone at site G2. 

5.   REAL-TIME EXPERIMENTS AND 
PERFORMANCE ASSESSMENT 

To evaluate the performance of a real-time shadow 
matching system on smartphones, experiments were 
conducted in central London. Section 4.1 outlines the 3D 
city model and the test sites, and describes the 
configuration of the shadow-matching system. A typical 
example of the real-time experiments is described in 
Section 4.2. Recorded GNSS data is then processed using 
an identical algorithm to that in the real-time system. 
Section 4.3 shows the scoring maps, which are important 
intermediate results of the shadow-matching system. The 
positioning results compared between the new system and 
conventional GNSS positioning are given in Section 4.4. 

5.1 Experimental Settings 

A 3D city model of the Aldgate area of central London, 
supplied by ZMapping Ltd, was used. The model has a 
high level of detail and decimetre-level accuracy. Figure 
10 shows part of the city model used in this work.  

Four experimental locations with different road conditions 
were selected on Fenchurch Street, a built-up urban area. 
Figure 11 shows photos taken at the street, showing the 
urban environments. Two of the sites, named G1 and R1, 
were located at a ‘T’ junction between Fenchurch Street 
and Fenchurch Buildings Road. The other two sites, named 
G2 and R2, were selected between junctions on Fenchurch 
Street. In addition, G1 and R1 are located on opposite side 
of the street, enabling the new system to also be tested for 
its ability to distinguish the correct side of the street. The 
same layout applies to G2 and R2. All sites were selected 
on the footpath close to the traffic lanes. Figure 12 shows 
an aerial view of the city model and a satellite image, 
illustrating the settings of the four experimental sites. The 
truth model is set using the 3D city model. The slight 
offset between the city model and the satellite image is 
caused by the geometric distortions of the satellite images.  

Before the experiment, in the offline phase of this work, a 
grid with 3-meter spacing was generated. Indoor points 
were then eliminated and building boundaries were 
determined at outdoor points, as described earlier in 
Section 2. The building boundaries were stored in a 
specially defined format in a database, and pre-loaded on 
the smartphone used in this experiment. 

Real-time shadow-matching positioning was performed on 
a Samsung Galaxy S3 smartphone with a 5-second interval. 
The experimenter stood at each location for 6 minutes. 
Both GPS and GLONASS observations were used. Real-
time satellite visibility information and positioning results 
were recorded at 1-second interval for later analysis.  

5.2 Real-time experiment 

A real-time shadow-matching positioning experiment was 
conducted. The typical processing time for the system was 
found to be 1-2 seconds.  



  

  

Figure 14: Shadow-matching scoring map at one epoch for four experimental sites. 

Figure 13 shows a photo taken in the real-time experiment 
using the developed shadow-matching application (app) at 
site G2. As the application is a prototype of the real-time 
shadow-matching system, both the conventional GNSS 
solution of the smartphone GNSS chip and the positioning 
solution of the new system are displayed to the 
experimenter for a real-time comparison. The blue points 
are the conventional GNSS solutions, while the red points 
represent the solutions of the new system. The true 
location of the experimenter at G2 can be found in Figure 
12. It is shown in Figure 13 that the conventional solutions 
are on the wrong side of the street, and distributed sparsely 
in the cross-street direction in comparison with the 
solutions of the new system. The shadow-matching real-
time solutions are distributed more consistently in the 
across-street direction, on the correct side of the street. 
This is in line with the expected benefits of the new system 
which gives better across-street accuracy. 

5.3 Analysis on algorithm scoring results 

In real-time, a 40-meter radius candidate circle, centred at 
the conventional GNSS positioning solution provided by 
smartphone GNSS chip, is used to generate candidate 
positions defining the search region for the shadow-
matching technique. The pre-calculated candidate grid of 
building boundaries (i.e. the off-line phase database) is 

loaded at this stage. At each observation epoch, a 
comparison is made between the predicted and observed 
satellite visibility, and the score scheme is applied 
accordingly. To illustrate the distribution of scores at the 
grid points, Figure 14 shows examples of the score maps at 
each experimental location. The coloured dots represent 
the candidate positions. The scale represents the score 
obtained for the candidate position in the shadow-
matching algorithm, with higher scores representing a 
higher confidence level that the user is at this location. The 
true location of the experimental site is shown by a black 
cross in each colour map. 

In Figure 14, it is clearly demonstrated that the shadow-
matching algorithm is sensitive to changes in the cross-
street direction, but less sensitive in the down-street 
direction. This is in line with expectations, and 
complements conventional GNSS positioning which is 
generally more precise in the down-street direction in 
urban areas due to the signal geometry. Combining the 
cross-street shadow-matching solution with the down-
street conventional GNSS is an approach to intelligent 
urban positioning (IUP) (Groves et al., 2012a). 
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Figure 15: Comparison of cross-street positioning error between conventional GNSS solution provided by the smartphone and 
the shadow-matching solution, both based on real-time data.

There are some spaces between buildings that fall within 
the search area, but the highest scoring points are 
predominantly in the correct street. It can also be inferred 
from Figure 14 that in most cases, the highest score areas 
(dark red) appear on the correct side of the street. However, 
the high scores do not always appear at the expected area, 
mainly due to non-line-of-sight (NLOS) reception. 
Applying different scoring matrixes may reduce the effect 
imposed by NLOS receptions, but it is out of the scope of 
this paper. In order to further analyse the consistency of 
positioning performance of the implemented positioning 
system over the whole period of the experiment, more 
analysis is presented in the Section 4.4. 

5.4 Performance comparison with conventional 
GNSS positioning 

In this section, the overall performance of the real-time 
shadow-matching positioning system is assessed and 
compared with the conventional GNSS solution from the 
GNSS chip in the Samsung Galaxy S3 smartphone, both in 
real-time. The performance in the cross-street direction is 
the main concern.  

To assess the performance of real-time shadow matching 
against the conventional GNSS positioning solution, the 
position errors are transformed from local coordinates 
(Northing and Easting) to the along-street and across-street 
directions. Figure 15 shows the positioning results of the 
conventional GNSS navigation solution from the 
smartphone GNSS chip, compared with the shadow-
matching positioning results, expressed as errors in the 

across-street direction. It shows that, in most cases, the 
shadow matching solution outperforms the conventional 
GNSS positioning solution. The shadow matching solution 
has improved the conventional positioning error, in the 
across-street direction, from typically 10 - 40 meters to 
within 5 meters in the most epochs. In the case of G2 
(upper-right in Figure 15), the shadow-matching solution 
accuracy is better than 2m in most epochs.  

On the right side of each sub-figure in Figure 15, the 
position error distribution is compared between the 
shadow-matching solution and the conventional solution. 
It is shown that shadow matching improves the positioning 
accuracy, reducing the average error to less than 5 meters 
on average in each case.  

  

Figure 16: Comparison of the cross-street mean absolute 
deviation over all epochs between the conventional GNSS 

positioning solution and the shadow-matching solution. 
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Figure 17: Success rate of cross-street positioning error within certain ranges, compared between the new positioning system 
and the conventional GNSS solution.

In order to evaluate the performance across all of the 
epochs, a statistical analysis was performed. An indicator, 
mean absolute derivation (MAD), was used to evaluate the 
performance from this perspective. In order to show the 
improvements of shadow matching over conventional 
GNSS positioning, the MADs at each site are compared in 
Figure 16. The bar shows the mean across-street 
positioning error using the conventional and shadow-
matching algorithm, respectively. It should be noted that 
the statistics cover a 6-minute observation period, during 
which the constellation geometry changed slowly, so the 
results are highly correlated, temporally, allowing 
consistency of the system to be evaluated. It is shown in 
Figure 16 that the across street positioning performance of 
shadow matching is significantly better than conventional 
GNSS positioning solution. The shadow-matching 
positioning algorithm reduced the average cross-street 
error by 36.9%, 77.6%, 90.8% and 71.3% for G1, G2, R1, 
and R2 respectively. The new positioning system reduces 
the cross-street positioning error from 14.81 m of the 
conventional solution to 3.33 m of the new system, 
averaged over all four experimental sites. This is a 77.5% 
reduction of cross-street positioning errors on average. The 
RMS difference shows that the consistency of the shadow-
matching solution also outperforms the conventional 
solution. 

Further statistical comparisons have been conducted to 
assess the positioning performance as a success rate over 6 
minutes, and the results are shown in Figure 17. As the 
street is around 10m wide, a positioning accuracy of less 

than 5m is considered good enough to determine the 
correct side of the street, while a positioning accuracy 
better than 2m is considered good enough to distinguish 
the footpath from a traffic lane. Averaged over the four 
experimental sites, the success rate using shadow matching 
for determining the correct side of a street is 54.4%, 
significantly improved from the success rate of 20.9% for 
the conventional solution. The success rate of 
distinguishing the footpath from a traffic lane is 25.6% for 
shadow matching, also considerably increased from 7.7%, 
for the conventional GNSS positioning. 

Figure 18 shows the positioning results of the new system 
compared with the conventional GNSS solution in Google 
Earth. The blue dots represent the locations of the 
conventional GNSS solution, recorded in real-time. The 
purple dots denote the positioning solutions provided by 
the new system. The tags represent the true location of the 
site in each case. It can be seen that typically, the new 
system gives solutions more consistent with each other in 
cross-street direction. The solutions also have better 
accuracy in the cross-street direction, compared to the 
conventional solution. However, the conventional solution 
is more accurate in the along-street direction, in line with 
expectations.  

The shadow matching positioning system is a suitable 
complementation to conventional GNSS positioning. As 
shadow matching improves the cross-street positioning 
significantly, it shows a high potential to be combined with 
conventional GNSS and other possible techniques for 
better overall performance (Groves et al., 2012a).  
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Figure 18: The positioning solution shown in Google Earth satellite image view (The blue dots represent the locations of the 
conventional GNSS solution. The purple dots denote the positioning solutions provided by the new system. The tags represent 

the true location of the site in each case. Image © 2013 Bluesky)

It should be noted that selection of a suitable grid spacing 
of building boundaries influences the performance and 
speed of the shadow matching system. The current 
implementation of the real-time shadow-matching system 
utilizes a grid of building boundaries with 3-meter spacing. 
It already shows a significant performance improvement in 
comparison with conventional GNSS positioning. A grid 
with 2-meter spacing, 1-meter spacing or even denser 
spacing can potentially be applied. In this work, a 1-meter 
spacing was also tested, providing an improved 
performance of 5% in terms of reduction of mean error 
averaged over the four sites. However, using the grid with 
1-meter spacing requires roughly 9 times more 
computational time in comparison with using a grid with 
3-meter spacing.  Clearly, there is a trade-off between the 
accuracy of the shadow-matching system and the running 
time. The reason a grid with 3-meter spacing is finally 
used in the real-time system is that it gives the best 
compromise between performance and speed. 

6. FEASIBILITY ASSESSMENT - TOWARDS 
LARGER SCALE IMPLEMENTATION 

This section presents an assessment from the perspective 
of feasibility of deploying the system into larger scale. 

6.1 Availability of 3D City Models and Satellite 
Information 

The shadow-matching system depends on 3D or 2.5D city 
models to improve positioning. The availability of the 
models is of importance. Fortunately, there are an 
increasing number of 3D city models available through the 
internet. A few commercial examples include Google 
Maps 3D by Google Inc., iOS 3D Maps by Apple Inc., 
Bing Maps 3D by Microsoft Corporation, Nokia Maps 3D 
WebGL and Edushi 3D Maps. In addition to the 
commercial 3D maps, some free and cheap 3D maps are 
provided by some organisations, including Open Street 
Maps 3D (OSM-3D). 

The satellite tracking information required by the new 
system in real-time has also been available to use. The 
shadow-matching system only requires information on 
whether the satellites are tracked or not, instead of pseudo-
range or carrier phase measurements. It is provided on 
regular basis in NMEA sentences by most consumer-grade 
GNSS receivers. With the signal-to-noise ratio (SNR) 
message also regularly available through NMEA sentences, 
shadow matching will provide more reliable performance 
(Wang et al., 2012a). In addition, both the Android and the 
Windows Phone operating systems provide an API for 
developers to get this information in real-time. 



6.2 Data Storage and Transfer Requirements 

Shadow matching requires the knowledge of the building 
boundaries to work. Thus, the building boundaries 
database should be transferred to the user device on the fly 
or pre-downloaded (Groves et al., 2012b). Building 
boundaries with 1-degree resolution in azimuth at a grid 
point require about 300 bytes of storage, without 
compression.  

With a 33 meter grid, a 1km long 20m wide street would 
contain 2222 grid points, which would require 651 kB of 
data storage. If the similarities between adjacent azimuths 
are exploited for compressing data, substantial data 
compression should be possible; perhaps up to a factor of 
ten. A 4 GB flash drive could store 6292 – 62920 km of 
road network. The Great London metropolitan area 
contains about 15,000 km of road. However, the built-up 
areas that require shadow matching for better positioning 
may be 10% of the total. Thus, it may be practical to 
preload the building boundaries onto a smartphone. 

An alternative method is to transfer the data over the 
mobile network as required. On a 100-meter long 20-meter 
wide street, only 222 grid points are needed for shadow 
matching, which requires 141 kB of data. Transferring this 
would take less than two seconds using the 3G mobile 
phone network with a normal data plan. 

Thus, in practice, it is feasible to implement shadow-
matching system on a smartphone, a PND, or other 
consumer-grade navigation device. 

6.3 Demand from Applications 

Meters-level across-street accuracy in urban areas benefits 
a number of existing LBS and creates new applications. 
For example, vehicle lane detection is feasible with 
meters-level across-street accuracy. Although lane 
guidance systems are now common for in-car navigation 
systems, a lane detection system may enable a lane 
guidance system to guide the correct lane. Similarly, 
intelligent transportation systems (ITS) may use this 
technique to direct individual vehicles for maximizing 
traffic flow, and for prioritizing emergency vehicles. In 
situations where crossing the road takes considerable effort 
for pedestrians, location-based advertising (LBA) systems 
could use this technique to target the most suitable 
customers on the same side of the street. Some augmented-
reality games may enhance the experience of the players 
through more accurate positioning. Perhaps most 
importantly, step-by-step guidance for the visually 
impaired and for tourists requires high positioning 
accuracy in urban areas in order to work. Navigation in 
mountainous regions could also benefit from this system 
when a digital elevation model (DEM) is available.  

7. CONCLUSIONS 

A new smartphone-based shadow-matching system, 
assisted by knowledge derived from 3D models of the 

buildings, has been designed. The new system is optimized 
to improve computational efficiency to account for the low 
processing power and limited storage on smartphones. The 
design of the real-time shadow-matching system and the 
optimizations has then been implemented, with details 
explained. A shadow-matching application (app) for 
Android operating system has been developed.  

Furthermore, with the previous shadow-matching 
algorithms tested mainly on personal computers, for the 
first time, a demonstration is performed on a smartphone 
with real-time GNSS data stream. The computational 
efficiency of the system is thus verified, showing its 
potential for larger scale deployment. The experiment was 
conducted at four different locations, providing a statistical 
performance assessment of the new system. Analysis was 
conducted to evaluate the performance of the system. The 
experimental results show that the proposed system 
outperforms the conventional GNSS positioning solution, 
reducing the cross-street positioning error by 69.2% on 
average.  

Finally, the feasibility of deploying the new system on a 
larger scale is discussed, with three aspects analysed – 
availability of the required information, data storage and 
transfer requirements and market demands. 

As discussed in the introduction and Section 5.3, the 
meters-level across-street accuracy in urban areas benefits 
a variety of applications from Intelligent Transportation 
Systems (ITS) and land navigation systems for lane 
identification, location-based advertisement (LBA) for 
targeting suitable consumers, step-by-step guidance for the 
visually impaired and for tourists, to many other location-
based services (LBS).  

It should be noted that the system does not require real-
time rendering of 3D scenes or any additional hardware, 
making it power-efficient and cost-effective. An increasing 
number of smartphones have multi-core processors, 
enabling parallel processing techniques to be exploited for 
improved efficiency of shadow matching. The system is 
also expandable to work with Galileo and Beidou 
(Compass) in the future, with potentially improved 
performance. 

In the future, the shadow-matching system can be 
implemented on a smartphone, a PND, or other consumer-
grade navigation device, as part of an intelligent 
positioning system, whereby the cross-street position is 
determined mainly by shadow matching and the along-
street position mainly by conventional ranging-based 
GNSS positioning (Groves et al., 2012a). Multi-epoch 
kinematic positioning using shadow matching can also be 
investigated, which utilize knowledge from different 
epochs for better positioning performance.  

Other techniques, such as Wi-Fi positioning, inertial 
sensors and pressure sensors, could be added to improve 
the overall positioning performance. In the long term, 
shadow matching could form part of a new generation of 



multi-sensor integrated navigation system alongside 
techniques such as environmental feature matching 
(Walter et al., 2013), low-cost array-based inertial 
measurement units (Martin et al., 2013), opportunistic 
radio navigation and context adaptivity (Groves et al., 
2013c). 
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