185 research outputs found

    Non-specific filtering of beta-distributed data.

    Get PDF
    BackgroundNon-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias.ResultsWe compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets.ConclusionsWe found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered

    Comparisons of substitution, insertion and deletion probes for resequencing and mutational analysis using oligonucleotide microarrays

    Get PDF
    Although oligonucleotide probes complementary to single nucleotide substitutions are commonly used in microarray-based screens for genetic variation, little is known about the hybridization properties of probes complementary to small insertions and deletions. It is necessary to define the hybridization properties of these latter probes in order to improve the specificity and sensitivity of oligonucleotide microarray-based mutational analysis of disease-related genes. Here, we compare and contrast the hybridization properties of oligonucleotide microarrays consisting of 25mer probes complementary to all possible single nucleotide substitutions and insertions, and one and two base deletions in the 9168 bp coding region of the ATM (ataxia telangiectasia mutated) gene. Over 68 different dye-labeled single-stranded nucleic acid targets representing all ATM coding exons were applied to these microarrays. We assess hybridization specificity by comparing the relative hybridization signals from probes perfectly matched to ATM sequences to those containing mismatches. Probes complementary to two base substitutions displayed the highest average specificity followed by those complementary to single base substitutions, single base deletions and single base insertions. In all the cases, hybridization specificity was strongly influenced by sequence context and possible intra- and intermolecular probe and/or target structure. Furthermore, single nucleotide substitution probes displayed the most consistent hybridization specificity data followed by single base deletions, two base deletions and single nucleotide insertions. Overall, these studies provide valuable empirical data that can be used to more accurately model the hybridization properties of insertion and deletion probes and improve the design and interpretation of oligonucleotide microarray-based resequencing and mutational analysis

    Sensitivity and reproducibility of standardized-competitive RT-PCR for transcript quantification and its comparison with real time RT-PCR

    Get PDF
    BACKGROUND: Probe based detection assays form the mainstay of transcript quantification. Problems with these assays include varying hybridization efficiencies of the probes used for transcript quantification and the expense involved. We examined the ability of a standardized competitive RT-PCR (StaRT PCR) assay to quantify transcripts of 4 cell cycle associated genes (RB, E2F1, CDKN2A and PCNA) in two cell lines (T24 & LD419) and compared its efficacy with the established Taqman real time quantitative RT-PCR assay. We also assessed the sensitivity, reproducibility and consistency of StaRT PCR. StaRT PCR assay is based on the incorporation of competitive templates (CT) in precisely standardized quantities along with the native template (NT) in a PCR reaction. This enables transcript quantification by comparing the NT and CT band intensities at the end of the PCR amplification. The CT serves as an ideal internal control. The transcript numbers are expressed as copies per million transcripts of a control gene such as β-actin (ACTB). RESULTS: The NT and CT were amplified at remarkably similar rates throughout the StaRT PCR amplification cycles, and the coefficient of variation was least (<3.8%) when the NT/CT ratio was kept as close to 1:1 as possible. The variability between the rates of amplification in different tubes subjected to the same StaRT PCR reaction was very low and within the range of experimental noise. Further, StaRT PCR was sensitive enough to detect variations as low as 10% in endogenous actin transcript quantity (p < 0.01 by the paired student's t-test). StaRT PCR correlated well with Taqman real time RT-PCR assay in terms of transcript quantification efficacy (p < 0.01 for all 4 genes by the Spearman Rank correlation method) and the ability to discriminate between cell types and confluence patterns. CONCLUSION: StaRT PCR is thus a reliable and sensitive technique that can be applied to medium-high throughput quantitative transcript measurement. Further, it correlates well with Taqman real time PCR in terms of quantitative and discriminatory ability. This label-free, inexpensive technique may provide the ability to generate prognostically important molecular signatures unique to individual tumors and may enable identification of novel therapeutic targets

    Natural Killer T Cells Infiltrate Neuroblastomas Expressing the Chemokine CCL2

    Get PDF
    CD1d-restricted Vα24-Jα18–invariant natural killer T cells (iNKTs) are potentially important in tumor immunity. However, little is known about their localization to tumors. We analyzed 98 untreated primary neuroblastomas from patients with metastatic disease (stage 4) for tumor-infiltrating iNKTs using TaqMan® reverse transcription polymerase chain reaction and immunofluorescent microscopy. 52 tumors (53%) contained iNKTs, and oligonucleotide microarray analysis of the iNKT+ and iNKT− tumors revealed that the former expressed higher levels of CCL2/MCP-1, CXCL12/SDF-1, CCL5/RANTES, and CCL21/SLC. Eight tested neuroblastoma cell lines secreted a range of CCL2 (0–21.6 ng/ml), little CXCL12 (≤0.1 ng/ml), and no detectable CCL5 or CCL21. CCR2, the receptor for CCL2, was more frequently expressed by iNKT compared with natural killer and T cells from blood (P < 0.001). Supernatants of neuroblastoma cell lines that produced CCL2 induced in vitro migration of iNKTs from blood of patients and normal adults; this was abrogated by an anti-CCL2 monoclonal antibody. CCL2 expression by tumors was found to inversely correlate with MYCN proto-oncogene amplification and expression (r = 0.5, P < 0.001), and MYCN-high/CCL2-low expression accurately predicted the absence of iNKTs (P < 0.001). In summary, iNKTs migrate toward neuroblastoma cells in a CCL2-dependent manner, preferentially infiltrating MYCN nonamplified tumors that express CCL2

    Thyroid and hepatic function after high-dose 131 I-metaiodobenzylguanidine ( 131 I-MIBG) therapy for neuroblastoma.

    Full text link
    Background 131 I-Metaiodobenzylguanidine ( 131 I-MIBG) provides targeted radiotherapy for children with neuroblastoma, a malignancy of the sympathetic nervous system. Dissociated radioactive iodide may concentrate in the thyroid, and 131 I-MIBG is concentrated in the liver after 131 I-MIBG therapy. The aim of our study was to analyze the effects of 131 I-MIBG therapy on thyroid and liver function. Procedure Pre- and post-therapy thyroid and liver functions were reviewed in a total of 194 neuroblastoma patients treated with 131 I-MIBG therapy. The cumulative incidence over time was estimated for both thyroid and liver toxicities. The relationship to cumulative dose/kg, number of treatments, time from treatment to follow-up, sex, and patient age was examined. Results In patients who presented with Grade 0 or 1 thyroid toxicity at baseline, 12 ± 4% experienced onset of or worsening to Grade 2 hypothyroidism and one patient developed Grade 2 hyperthyroidism by 2 years after 131 I-MIBG therapy. At 2 years post- 131 I-MIBG therapy, 76 ± 4% patients experienced onset or worsening of hepatic toxicity to any grade, and 23 ± 5% experienced onset of or worsening to Grade 3 or 4 liver toxicity. Liver toxicity was usually transient asymptomatic transaminase elevation, frequently confounded by disease progression and other therapies. Conclusion The prophylactic regimen of potassium iodide and potassium perchlorate with 131 I-MIBG therapy resulted in a low rate of significant hypothyroidism. Liver abnormalities following 131 I-MIBG therapy were primarily reversible and did not result in late toxicity. 131 I-MIBG therapy is a promising treatment for children with relapsed neuroblastoma with a relatively low rate of symptomatic thyroid or hepatic dysfunction. Pediatr Blood Cancer 2011;56:191–201. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78497/1/22767_ftp.pd

    Probable fatal drug interaction between intravenous fenretinide, ceftriaxone, and acetaminophen: a case report from a New Approaches to Neuroblastoma (NANT) Phase I study

    Get PDF
    Background: Patients with relapsed/refractory stage 4 high-risk neuroblastoma were enrolled on a phase I study (NANT2004-03) of intravenous fenretinide emulsion. Pharmacokinetic samples were collected during and after the infusion, and the levels were measured using an HPLC system. A likely case of a fatal drug interaction between fenretinide, ceftriaxone, and acetaminophen is described, including the pharmacokinetics of fenretinide, laboratory data, and post-mortem autopsy in a pediatric neuroblastoma patient treated on this study. Case presentation: On Day 4 of a scheduled 5-day-infusion of intravenous fenretinide, the patient developed a fever, acetaminophen was started, ceftriaxone initiated for possible bacteremia, and fenretinide level doubled from 56 to 110 μM. Over the next three days, although blood cultures remained negative, the patient’s condition deteriorated rapidly. Acute liver failure was diagnosed on Day 7, and the patient expired on Day 20 of fulminant hepatic failure with associated renal, cardiac, and hemorrhagic/coagulation toxicities. Autopsy showed extensive hemorrhagic necrosis of the liver, marked bile duct proliferation, and abundant hemosiderin, consistent with cholestasis and drug toxicity. Conclusions: After extensive review of patient data, the clinical course, and the literature, we conclude that observed hepatic toxicity was likely due to a drug interaction between fenretinide and concomitant ceftriaxone and acetaminophen. None of the other 16 patients treated on this study experienced significant hepatic toxicity. Although the prevalence of cholestasis with ceftriaxone usage is relatively high, the potential drug interaction with these concomitant medications has not been previously reported. Concomitant use of fenretinide, ceftriaxone, and acetaminophen should be avoided

    Adjuvant Chemotherapy for Muscle-invasive Bladder Cancer : A Systematic Review and Meta-analysis of Individual Participant Data from Randomised Controlled Trials

    Get PDF
    Context Our prior systematic review and meta-analysis of individual participant data (IPD) suggesting a benefit of adjuvant chemotherapy for muscle-invasive bladder cancer was limited by the number and size of included randomised trials. We have updated results to include additional trials, providing the most up-to-date and reliable evidence of the effects of this treatment. Objective To investigate the role of adjuvant cisplatin-based chemotherapy in the treatment of muscle-invasive bladder cancer. Evidence acquisition Published and unpublished trials were sought via searches of bibliographic databases, trials registers, conference proceedings, and hand searching. Updated IPD were centrally collected, checked, and analysed. Results from individual randomised controlled trials (RCTs) were combined using a two-stage fixed-effect model. Prespecified analyses explored any variation in effect by trial and participant characteristics. Evidence synthesis Analyses of ten RCTs (1183 participants) demonstrated a benefit of cisplatin-based adjuvant chemotherapy on overall survival (hazard ratio [HR] = 0.82, 95% confidence interval [CI] = 0.70–0.96, p = 0.02). This represents an absolute improvement in survival of 6% at 5 yr, from 50% to 56%, and a 9% absolute benefit when adjusted for age, sex, pT stage, and pN category (HR = 0.77, 95% CI = 0.65–0.92, p = 0.004). There was no clear evidence that the effect varied by trial or participant characteristics. Adjuvant chemotherapy was also shown to improve recurrence-free survival (HR = 0.71, 95% CI = 0.60–0.83, p < 0.001), locoregional recurrence-free survival (HR = 0.68, 95% CI = 0.55–0.85, p < 0.001), and metastasis-free survival (HR = 0.79, 95% CI = 0.65–0.95, p = 0.01), with absolute benefits of 11%, 11%, and 8%, respectively. Conclusions This systematic review and meta-analysis demonstrates that cisplatin-based adjuvant chemotherapy is a valid option for improving outcomes for muscle-invasive bladder cancer. Patient summary We looked at the effect of cisplatin-based chemotherapy on outcomes in participants with muscle-invasive bladder cancer. We gathered this information from eligible randomised controlled trials. We demonstrated that cisplatin-based chemotherapy is a valid option for improving outcomes of muscle-invasive bladder cancer
    corecore