230 research outputs found
Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management
Familial haemophagocytic lymphohistiocytosis (FHL) is a rare autosomal recessive disorder of immune dysregulation associated with uncontrolled T cell and macrophage activation and hypercytokinaemia. The incidence of FHL is 0·12/100·000 children born per year, with a male to female ratio of 1:1. The disease is classified into six different types based on genetic linkage analysis and chromosomal localization; five specific genetic defects have been identified, which account for approximately 90% of all patients. Type 1 is due to an as yet unidentified gene defect located on chromosome nine. Type 2 is caused by mutations in the perforin (PRF1) gene, type 3 by mutations in the Munc-13–4 (UNC13D) gene, type 4 by mutations in the syntaxin 11 (STX11) gene and the recently described type 5 due to mutations in the gene encoding syntaxin binding protein 2 (STXBP-2). The incidence of the five types varies in different ethnic groups. The most common presenting features are pyrexia of unknown origin, pronounced hepatosplenomegaly and cytopenias. Neurological features tend to present later and are associated with poor prognosis. Absent or decreased lymphocyte cytotoxicity is the cellular hallmark of FHL. Biochemical features such as hyperferritinaemia, hypertriglyceridaemia and hypofibrinogenaemia are usually present, along with high levels of soluble interleukin 2 receptor in the blood and cerebrospinal fluid. Bone marrow aspirate may demonstrate the characteristic haemophagocytes, but initially is non-diagnostic in two-thirds of patients. Established international clinical, haematological and biochemical criteria now facilitate accurate clinical diagnosis. The disease is fatal unless a haematopoietic stem cell transplant (HSCT) is performed. The introduction of HSCT has dramatically improved the prognosis of the disease. However, the mortality of the disease is still significantly high and a number of challenges remain to be addressed. Active disease at the time of the transplant is the major significant poor prognostic factor. Delayed diagnosis, after irreversible organ damage has occurred, especially neurological damage, disease reoccurrence and pre-transplant mortality, remain a concern
Measurement of C1-Inhibitor function alone is sufficient for diagnosis of hereditary angioedema
The World Allergy Organisiation/European Academy of Allergy and Clinical Immunology (WAO/EAACI) 2017/2018 guidelines recommend measuring complement4 levels, followed by C1-inhibitor level and function for diagnosis of hereditary angioedema (HAE). We analysed 6 months’ worth of data generated in our laboratory which is a specialist regional immunology service and also provides laboratory service for the Barts Health immunology department, which is a GA2LEN/HAEi-Angioedema Centre of Excellence and Reference (ACARE) and hence, investigates a large number of patients for HAE. We found that an efficient and sensitive approach for laboratory diagnosis of HAE is to only test the C1-inhibitor function. This approach had a sensitivity of 100% and reduced the cost of laboratory investigations for HAE diagnosis by 45%
Species-specific secondary metabolites from Primula veris subsp. veris obtained In Vitro adventitious root cultures: an alternative for sustainable production
Primula veris subsp. veris L. is a perennial herbaceous and medicinal plant species the roots and flowers of which are a source of valuable pharmaceutical raw materials. The plant tissues are used to produce expectorant and diuretic drugs due to their high content of triterpene saponins and phenolic glycosides. Underground roots of P. veris can be obtained only through a destructive process during the plant’s harvesting. In the present study, an in vitro adventitious root production protocol was developed as an alternative way of production, focused on four species-specific secondary metabolites. Root explants were cultured in Murashing & Skoog liquid medium supplemented with 5.4 µM α-naphthaleneacetic acid, 0.5 µM kinetin, L-proline 100 mg/L, and 30 g/L sucrose, in the dark and under agitation. The effect of temperature (10, 15 and 22 ◦C) on biomass production was investigated. The content of two flavonoid compounds (primeverin and primulaverin), and two main triterpene saponins (primulic acid I and II) were determined after 60 days of culture and compared with 1.5-year-old soil-grown plants. The accumulated content (mg/g DW) of bioactive compounds of in vitro adventitious roots cultured under 22 ◦C was significantly higher than the other two temperatures of the study, being 9.71 mg/g DW in primulaverin, 0.09 mg/g DW in primeverin, 6.09 mg/g DW in primulic acid I, and 0.51 mg/g DW in primulic acid II. Compared to the soil-grown roots (10.23 mg/g DW primulaverin, 0.28 mg/g DW primeverin, 17.01 mg/g DW primulic acid I, 0.09 mg/g DW primulic acid II), the in vitro grown roots at 22 ◦C exhibited a 5.67-fold higher content in primulic acid II. However, primulic acid I and primeverin content were approximately three-fold higher in soil-grown roots, while primulaverin content were at similar levels for both in vitro at 22 ◦C and soil-grown roots. From our results, tissue culture of P. veris subsp. veris could serve not only for propagation but also for production of species-specific secondary metabolites such as primulic acid II through adventitious root cultures. This would therefore limit the uncontrolled collection of this plant from its natural environment and provide natural products free from pesticides in a sustainable wa
Blocking T cell co-stimulation in primary Sjögren's syndrome:rationale, clinical efficacy and modulation of peripheral and salivary gland biomarkers
There is accumulating evidence that patients with primary Sjögren's syndrome (pSS) display aberrant CD4+ T cell responses, both in the peripheral compartment and in the inflamed salivary glands. CD4+ T cell abnormalities are also critically associated with B cell hyper activation, one of the hallmarks of disease, which is linked with disease severity and evolution to lymphoma. T cell activation and the cross-talk between T and B cells are tightly regulated by the balance between co-stimulatory pathways, such as the interactions between CD80/CD86:CD28, CD40:CD40L and ICOS:ICOSL, and co-inhibitory signals, including the immunoregulatory CTLA-4 protein. Evidence from patients with pSS as well as data from animal models of the disease suggests that these pathways play a critical role in pSS pathogenesis and their targeting could be exploited for therapeutic purposes. In this review, we first summarise the evidence implicating aberrant T cell co-stimulation and co-inhibition in driving the disease before focusing on the results of recent randomised controlled trials (RCTs) with compounds able to block T cell co-stimulation and enhance T cell co-inhibition. Despite a clear biological effect on downstream B cell activation has been observed in patients treated with CTLA-4-Ig (abatacept) and with monoclonal antibodies targeting CD40 and ICOSL, the clinical efficacy of this approach has so far yielded mixed results; while the anti-CD40 monoclonal antibody iscalimab showed significant improvement in systemic disease activity compared to placebo, two large RCTs with abatacept and a phase IIa RCT with an anti-ICOSL monoclonal antibody (prezalumab) failed to reach their primary endpoints. Although the discrepancies between biological and clinical efficacy of targeting T cell co-stimulation on pSS remain unresolved, several factors including drug bioavailability and receptor occupancy, patient stratification based on T-cell related biomarkers and the choice of study outcome are likely to play an important role and form the basis for further work towards the quest for a disease-modifying biologic therapy in pSS
Blocking T cell co-stimulation in primary Sjögren's syndrome:rationale, clinical efficacy and modulation of peripheral and salivary gland biomarkers
There is accumulating evidence that patients with primary Sjögren's syndrome (pSS) display aberrant CD4+ T cell responses, both in the peripheral compartment and in the inflamed salivary glands. CD4+ T cell abnormalities are also critically associated with B cell hyper activation, one of the hallmarks of disease, which is linked with disease severity and evolution to lymphoma. T cell activation and the cross-talk between T and B cells are tightly regulated by the balance between co-stimulatory pathways, such as the interactions between CD80/CD86:CD28, CD40:CD40L and ICOS:ICOSL, and co-inhibitory signals, including the immunoregulatory CTLA-4 protein. Evidence from patients with pSS as well as data from animal models of the disease suggests that these pathways play a critical role in pSS pathogenesis and their targeting could be exploited for therapeutic purposes. In this review, we first summarise the evidence implicating aberrant T cell co-stimulation and co-inhibition in driving the disease before focusing on the results of recent randomised controlled trials (RCTs) with compounds able to block T cell co-stimulation and enhance T cell co-inhibition. Despite a clear biological effect on downstream B cell activation has been observed in patients treated with CTLA-4-Ig (abatacept) and with monoclonal antibodies targeting CD40 and ICOSL, the clinical efficacy of this approach has so far yielded mixed results; while the anti-CD40 monoclonal antibody iscalimab showed significant improvement in systemic disease activity compared to placebo, two large RCTs with abatacept and a phase IIa RCT with an anti-ICOSL monoclonal antibody (prezalumab) failed to reach their primary endpoints. Although the discrepancies between biological and clinical efficacy of targeting T cell co-stimulation on pSS remain unresolved, several factors including drug bioavailability and receptor occupancy, patient stratification based on T-cell related biomarkers and the choice of study outcome are likely to play an important role and form the basis for further work towards the quest for a disease-modifying biologic therapy in pSS
- …