35 research outputs found

    THE ROLE OF TIP LEAKAGE FLOW IN SPIKE-TYPE ROTATING STALL INCEPTION

    Get PDF
    This paper describes the role of tip leakage flow in creating the leading edge separation necessary for onset of spike-type compressor rotating stall. A series of unsteady multi-passage simulations, supported by experimental data, are used to define and illustrate the two competing mechanisms that cause the high incidence responsible for this separation: blockage from a casing-suction-surface corner separation and forward spillage of the tip leakage jet. The axial momentum flux in the tip leakage flow determines which mechanism dominates. At zero tip clearance, corner separation blockage dominates. As clearance is increased, the leakage flow reduces blockage, moving the stall flow coefficient to lower flow, i.e. giving a larger unstalled flow range. Increased clearance, however, means increased leakage jet momentum and contribution to leakage jet spillage. There is thus a clearance above which jet spillage dominates in creating incidence, so the stall flow coefficient increases and flow range decreases with clearance. As a consequence there is a clearance for maximum flow range; for the two rotors in this study, the value was approximately 0.5% chord. The chord-wise distribution of the leakage axial momentum is also important in determining stall onset. Shifting the distribution towards the trailing edge increases flow range for a leakage jet dominated geometry and reduces flow range for a corner separation dominated geometry. Guidelines are developed for flow range enhancement through control of tip leakage flow axial momentum magnitude and distribution. An example is given of how this might be achieved.Mitsubishi Heavy Industries, Ltd

    Hand gesture-based interactive puppetry system to assist storytelling for children

    Get PDF
    © 2016 The Author(s)Digital techniques have been used to assist narrative and storytelling, especially in many pedagogical practices. With the rapid development of HCI techniques, saturated with digital media in their daily lives, young children, demands more interactive learning methods and meaningful immersive learning experiences. In this paper, we propose a novel hand gesture-based puppetry storytelling system which provides a more intuitive and natural human computer interaction method for young children to develop narrative ability in virtual story world. Depth motion sensing and hand gestures control technology is utilized in the implementation of user-friendly interaction. Young players could intuitively use hand gestures to manipulate virtual puppet to perform story and interact with different items in virtual environment to assist narration. Based on the result of the evaluation, this novel digital storytelling system shows positive pedagogical functions on children’s narrating ability as well as the competencies of cognitive and motor coordination. The usability of the system is preliminary examined in our test, and the results which showed that young children can benefit from playing with Puppet Narrator

    METHOD FOR ASSESSING EFFECTS OF CIRCUMFERENTIAL FLOW DISTORTION ON COMPRESSOR STABILITY.

    No full text
    This paper describes the development of a new analysis to predict the onset of flow instability for an axial compressor operating in a circumferentially distorted inlet flow. A relatively simple model is used to examine the influence of various distortions in setting this instability point. It is found that the model reproduces known experimental trends for the loss of stability margin with increasing distortion amplitude and with changes in reduced frequency
    corecore