1,084 research outputs found

    CoCoME with Security

    Get PDF
    In this technical report we provide the documentation of the functional requirements of a component-based system representing the IT infrastructure supermarket along with the description of confidentiality properties in the form of information flow requirements for the system. From an architectural point of view, we describe for each interface all services on a functional level. We identify a number of possible attackers and assign for each attacker what inputs to the system she may gain knowledge about and which outputs she may be able to observe. The architecture and security properties of the system are modeled using an extension of the Palladio Component Model

    Scaling of transmission capacities in coarse-grained renewable electricity networks

    Full text link
    Network models of large-scale electricity systems feature only a limited spatial resolution, either due to lack of data or in order to reduce the complexity of the problem with respect to numerical calculations. In such cases, both the network topology, the load and the generation patterns below a given spatial scale are aggregated into representative nodes. This coarse-graining affects power flows and thus the resulting transmission needs of the system. We derive analytical scaling laws for measures of network transmission capacity and cost in coarse-grained renewable electricity networks. For the cost measure only a very weak scaling with the spatial resolution of the system is found. The analytical results are shown to describe the scaling of the transmission infrastructure measures for a simplified, but data-driven and spatially detailed model of the European electricity system with a high share of fluctuating renewable generation.Comment: to be published in EP

    Probing the Superfluid to Mott Insulator Transition at the Single Atom Level

    Get PDF
    Quantum gases in optical lattices offer an opportunity to experimentally realize and explore condensed matter models in a clean, tunable system. We investigate the Bose-Hubbard model on a microscopic level using single atom-single lattice site imaging; our technique enables space- and time-resolved characterization of the number statistics across the superfluid-Mott insulator quantum phase transition. Site-resolved probing of fluctuations provides us with a sensitive local thermometer, allows us to identify microscopic heterostructures of low entropy Mott domains, and enables us to measure local quantum dynamics, revealing surprisingly fast transition timescales. Our results may serve as a benchmark for theoretical studies of quantum dynamics, and may guide the engineering of low entropy phases in a lattice

    Non-Interference with What-Declassification in Component-Based Systems

    Get PDF
    Component-based design is a method for modular design of systems. The structure of component-based systems follows specific rules and single components make assumptions on the environment that they run in. In this paper, we provide a noninterference property for component-based systems that allows for a precise specification of what-declassification of information and takes assumptions on the environment into consideration in order to allow a modular, precise and re-usable information-flow analysis. For precise analysis, components can be analyzed by separately analysing services provided by a component, and from our compositionality theorem non-interference of components follows
    • …
    corecore