11 research outputs found

    Black Holes with Weyl Charge and Non-Riemannian Waves

    Get PDF
    A simple modification to Einstein's theory of gravity in terms of a non-Riemannian connection is examined. A new tensor-variational approach yields field equations that possess a covariance similar to the gauge covariance of electromagnetism. These equations are shown to possess solutions analogous to those found in the Einstein-Maxwell system. In particular one finds gravi-electric and gravi-magnetic charges contributing to a spherically symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a source for the non-Riemannian torsion and metric gradient fields instead of the electromagnetic field. The theory suggests that matter may be endowed with gravitational charges that couple to gravity in a manner analogous to electromagnetic couplings in an electromagnetic field. The nature of gravitational coupling to spinor matter in this theory is also investigated and a solution exhibiting a plane-symmetric gravitational metric wave coupled via non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit

    Gauge field theory for Poincar\'{e}-Weyl group

    Full text link
    On the basis of the general principles of a gauge field theory the gauge theory for the Poincar\'{e}-Weyl group is constructed. It is shown that tetrads are not true gauge fields, but represent functions from true gauge fields: Lorentzian, translational and dilatational ones. The equations of gauge fields which sources are an energy-momentum tensor, orbital and spin momemta, and also a dilatational current of an external field are obtained. A new direct interaction of the Lorentzian gauge field with the orbital momentum of an external field appears, which describes some new effects. Geometrical interpretation of the theory is developed and it is shown that as a result of localization of the Poincar\'{e}-Weyl group spacetime becomes a Weyl-Cartan space. Also the geometrical interpretation of a dilaton field as a component of the metric tensor of a tangent space in Weyl-Cartan geometry is proposed.Comment: LaTex, 27 pages, no figure
    corecore