11 research outputs found
Black Holes with Weyl Charge and Non-Riemannian Waves
A simple modification to Einstein's theory of gravity in terms of a
non-Riemannian connection is examined. A new tensor-variational approach yields
field equations that possess a covariance similar to the gauge covariance of
electromagnetism. These equations are shown to possess solutions analogous to
those found in the Einstein-Maxwell system. In particular one finds
gravi-electric and gravi-magnetic charges contributing to a spherically
symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a
source for the non-Riemannian torsion and metric gradient fields instead of the
electromagnetic field. The theory suggests that matter may be endowed with
gravitational charges that couple to gravity in a manner analogous to
electromagnetic couplings in an electromagnetic field. The nature of
gravitational coupling to spinor matter in this theory is also investigated and
a solution exhibiting a plane-symmetric gravitational metric wave coupled via
non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit
Gauge field theory for Poincar\'{e}-Weyl group
On the basis of the general principles of a gauge field theory the gauge
theory for the Poincar\'{e}-Weyl group is constructed. It is shown that tetrads
are not true gauge fields, but represent functions from true gauge fields:
Lorentzian, translational and dilatational ones. The equations of gauge fields
which sources are an energy-momentum tensor, orbital and spin momemta, and also
a dilatational current of an external field are obtained. A new direct
interaction of the Lorentzian gauge field with the orbital momentum of an
external field appears, which describes some new effects. Geometrical
interpretation of the theory is developed and it is shown that as a result of
localization of the Poincar\'{e}-Weyl group spacetime becomes a Weyl-Cartan
space. Also the geometrical interpretation of a dilaton field as a component of
the metric tensor of a tangent space in Weyl-Cartan geometry is proposed.Comment: LaTex, 27 pages, no figure
Recommended from our members
Corium quench in deep pool mixing experiments
The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO/sub 2/, 16% ZrO/sub 2/, and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m/sup 2/ and 3.7 MW/m/sup 2/, respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab
Beyond hyperkalemia: beta-blocker-induced cardiac arrest for normothermic cardiac operations
NRC publication: Ye