4,420 research outputs found

    Vandenberg

    Full text link

    Vorwort [Zwischen Antike und Moderne. Festschrift für Jürgen Malitz zum 65. Geburtstag]

    Get PDF

    Schriftenverzeichnis Jürgen Malitz

    Get PDF

    Das althistorische Proseminar: ein Leitfaden (Dezember 2022)

    Get PDF
    Einführung in das althistorische Proseminar der Universität Augsburg

    Potentials and Challenges of Additive Manufacturing Technologies for Heat Exchanger

    Get PDF
    The rapid development of additive manufacturing (AM) technologies enables a radical paradigm shift in the construction of heat exchangers. In place of a layout limited to the use of planar or tubular starting materials, heat exchangers can now be optimized, reflecting their function and application in a particular environment. The complexity of form is no longer a restriction but a quality. Instead of brazing elements, resulting in rather inflexible standard components prone to leakages, with AM, we finally can create seamless integrated and custom solutions from monolithic material. To address AM for heat exchangers we both focus on the processes, materials, and connections as well as on the construction abilities within certain modeling and simulation tools. AM is not the total loss of restrictions. Depending on the processes used, delicate constraints have to be considered. But on the other hand, we can access materials, which can operate in a much wider heat range. It is evident that conventional modeling techniques cannot match the requirements of a flexible and adaptive form finding. Instead, we exploit biomimetic and mathematical approaches with parametric modeling. This results in unseen configurations and pushes the limits of how we should think about heat exchangers today

    Chapter Potentials and Challenges of Additive Manufacturing Technologies for Heat Exchanger

    Get PDF
    The rapid development of additive manufacturing (AM) technologies enables a radical paradigm shift in the construction of heat exchangers. In place of a layout limited to the use of planar or tubular starting materials, heat exchangers can now be optimized, reflecting their function and application in a particular environment. The complexity of form is no longer a restriction but a quality. Instead of brazing elements, resulting in rather inflexible standard components prone to leakages, with AM, we finally can create seamless integrated and custom solutions from monolithic material. To address AM for heat exchangers we both focus on the processes, materials, and connections as well as on the construction abilities within certain modeling and simulation tools. AM is not the total loss of restrictions. Depending on the processes used, delicate constraints have to be considered. But on the other hand, we can access materials, which can operate in a much wider heat range. It is evident that conventional modeling techniques cannot match the requirements of a flexible and adaptive form finding. Instead, we exploit biomimetic and mathematical approaches with parametric modeling. This results in unseen configurations and pushes the limits of how we should think about heat exchangers today

    Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics

    Full text link
    We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data
    corecore