192 research outputs found

    Magnetic Field Modulation of Recombination Processes in Organic Photovoltaics

    Get PDF
    Polymer:fullerene photovoltaics have potential in small-scale power production but low open-circuit voltages limit their efficiency. Understanding the processes affecting the charge recombination rate is key to increasing device efficiency through optimizing open-circuit voltage. Most polymer-fullerene systems have an intramolecular triplet exciton state lower in energy than the interfacial charge-transfer state, and its formation can provide a terminal recombination pathway that may limit device performance. We used magnetic fields to modulate intersystem crossing in a prototypical system, and monitored the effect on the open-circuit voltage to infer changes in the steady-state carrier density and hence in the net recombination rate constant. We analyzed these effects using density-matrix modeling, and quantified the various recombination rate constants for a working device

    Spin-dependent recombination probed through the dielectric polarizability.

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953

    Spin-dependent recombination probed through the dielectric polarizability.

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953

    In situ optical measurement of charge transport dynamics in organic photovoltaics.

    Get PDF
    We present a novel experimental approach which allows extraction of both spatial and temporal information on charge dynamics in organic solar cells. Using the wavelength dependence of the photonic structure in these devices, we monitor the change in spatial overlap between the photogenerated hole distribution and the optical probe profile as a function of time. In a model system we find evidence for a buildup of the photogenerated hole population close to the hole-extracting electrode on a nanosecond time scale and show that this can limit charge transport through space-charge effects under operating conditions.This work was supported by the EPSRC [Grant number EP/ G060738/1].This is the author accepted manuscript. The final published version is available at http://pubs.acs.org/doi/abs/10.1021/nl503687u

    Efficient Singlet Fission and Triplet-Pair Emission in a Family of Zethrene Diradicaloids.

    Get PDF
    Singlet fission offers the potential to overcome thermodynamic limits in solar cells by converting the energy of a single absorbed photon into two distinct triplet excitons. However, progress is limited by the small family of suitable materials, and new chromophore design principles are needed. Here, we experimentally vindicate the design concept of diradical stabilization in a tunable family of functionalized zethrenes. All molecules in the series exhibit rapid formation of a bound, spin-entangled triplet-pair state TT. It can be dissociated by thermally activated triplet hopping and exhibits surprisingly strong emission for an optically "dark" state, further enhanced with increasing diradical character. We find that the TT excited-state absorption spectral shape correlates with the binding energy between constituent triplets, providing a new tool to understand this unusual state. Our results reveal a versatile new family of tunable materials with excellent optical and photochemical properties for exploitation in singlet fission devices

    Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    Get PDF
    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.NJLKD thanks the Cambridge Commonwealth European and International Trust, Cambridge Australian Scholarships and Mr Charles K Allen for financial support. MLB thanks the German National Academic Foundation (“Studienstiftung”) for financial support. MT thanks the Gates Cambridge Trust, EPSRC and Winton Programme for Sustainability for financial support. F.W.R.R. gratefully thanks financial support from CNPq [Grant number 246050/2012-8]. C.D. acknowledges financial support from the EU [Grant number 312483 ESTEEM2]. This work was supported by the EPSRC [Grant numbers EP/M005143/1, EP/G060738/1, EP/G037221/1] and the ERC [Grant number 259619 PHOTO-EM].This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms925

    Triplet diffusion in singlet exciton fission sensitized pentacene solar cells

    Get PDF
    Singlet fission sensitized photovoltaics have the potential to surpass the Shockley-Queisser limit for a single-junction structure. We investigate the dynamics of triplet excitons resulting from singlet fission in pentacene and their ionization at a C60 heterojunction. We model the generation and diffusion of excitons to predict the spectral response. We find the triplet diffusion length in polycrystalline pentacene to be 40 nm. Poly(3-hexylthiophene) between the electrode and pentacene works both to confine triplet excitons and also to transfer photogenerated singlet excitons into pentacene with 30% efficiency. The lower bound for the singlet fission quantum efficiency in pentacene is 180 ± 15%
    corecore