457 research outputs found
Editorial for the special issue on nanostructure based sensors for gas sensing: From devices to systems
The development of solid state gas sensors based on microtransducers and nanostructured sensing materials is the key point in the design of new portable measurement systems with sensing and identification performances comparable with those of most sophisticated analytical techniques. In such a context, a lot of effort must be spent of course in the development of the sensing material, but also in the choice of the transducer mechanism and structure, in the electrical characterization of the sensor prototypes, as well as in the design of suitable measurement setups. [...]
Modified POF Sensor for Gaseous Hydrogen Fluoride Monitoring in the Presence of Ionizing Radiations
This paper describes the development of a sensor designed to detect low concentrations of hydrogen fluoride (HF) in gas mixtures. The sensor employs a plastic optical fiber (POF) covered with a thin layer of glass- like material. HF attacks the glass and alters the fiber transmission capability so that the detection simply requires a LED and a photodiode. The coated POF is obtained by means of low-pressure plasma-enhanced chemical vapor deposition that allows the glass-like film to be deposited at low temperature without damaging the fiber core. The developed sensor will be installed in the recirculation gas system of the resistive plate chamber muon detector of the Compact Muon Solenoid experiment at the Large Hadron Collider accelerator of the European Organization for Nuclear Research (CERN
Sodium lactate solutions characterization using Electrochemical Impedance Spectroscopy
Lactate is an important metabolite in human body and, among possible medical applications, it can be used to monitor physical activity. Actually, its concentration represents a clear indication whether optimal training intensity is kept or if muscles are under anaerobic conditions. Routine procedures to measure lactate concentration during physical activity are represented by invasive measurements, which require blood sampling from the patient or the athlete. So, a great advantage would be derived by the possibility to monitor this analyte using non-invasive techniques. Considering the possibility to measure lactate in human sweat during sport activities, this paper presents the characterization of saline aqueous solutions containing sodium lactate by means of Electrochemical Impedance Spectroscopy (EIS). Measurements were performed using a two-electrode electrochemical cell and acquired spectra were analyzed also by means of equivalent electrical circuit (EEC) modeling. Results show an effect due to lactate concentration on solution impedance in the high-frequency region of spectrum, where a change in solution resistance is measured. At the same time, no changes in the measured capacitance were found. Future work will study the electrochemical behavior of lactate solutions also at higher frequencies to further investigate the possible use of EIS for lactate levels monitoring during sport activities
Raman spectroscopic characterization of corrosion products of archaeological iron
Raman spectroscopy is a versatile analytical technique which allows the detection of different molecules analysing the vibrational modes. As a matter of facts, the vibrational frequencies are typical of a specific chemical bond or of a structural symmetry. In this study, the Raman technique is used for the determination of iron corrosion products, mainly oxides and hydroxides. Metallic artefacts buried in soil are affected, in dependence of their electrochemical nobility, by corrosion phenomena of various entities, which partially modify their chemical composition and their structure. The process may occur both during burial time and after the extraction from the archaeological site, implying the potential loss of information about the metallurgical technology and structure of the object. The study of the corrosion phenomena allows to propose tailored strategies for the restoration and conservation of the artefacts, especially in view of the storage of the artefacts in a museum. This study validates the use of the Raman technique for this purpose, showing its efficiency in the identification of the iron corrosion products in favourable conditions for the analysis of Cultural Heritage artefacts, as the possibility of performing in situ analysis without the need of a previous sample preparation
Provenance, manufacturing and corrosion behavior of Ancient Hellenistic coins from Egypt
Some copper alloy coins of the Ptolemaic period from a private collection, providing valuable evidence for both archaeometric as well as materials science and corrosion studies, have been investigated. The coins were found in the ancient city of Bubastis, known as Tell Basta, in the Nile Delta, Egypt. The coins have been examined by optical microscopy for their metallurgical structure, analysed by X-ray fluorescence and Electron Dispersion Spectroscopy for their composition, and by X-ray diffraction for the characterisation of their corrosion products. An attempt has been made to remove part of their corrosion products by mild chemical cleaning procedures. In some areas the coins are heavily corroded by chlorides, however most of the inscriptions on the coins themselves are still decipherable. Assumptions are made on the coins provenance, the production period, the manufacturing technique and the burial environmental conditions
Environmental monitoring solution for cultural heritage
Environmental monitoring is crucial factor in the safeguard and conservation of the cultural heritage. Unsuitable environmental conditions can easily accelerate the degradation of several materials and, as consequence, damage the stored artifacts. Moreover, environmental conditions can easily change in an unpredictable way and, therefore, the employment of an environmental monitoring system is mandatory in almost all locations, including museums, storage rooms and outdoor exhibitions. This paper tries to explain the main constraints required for environmental monitoring in the cultural heritage field. Moreover, a novel distributed monitoring system, developed at Politecnico di Torino, is described and compared to several solutions that are commercially available. The proposed solution demonstrated excellent characteristics which satisfy the requirements of environmental monitoring in the cultural heritage at a very competitive cost
A low-cost automatic acquisition system for photogrammetry
Photogrammetry is a non-destructive technique commonly employed in the cultural heritage field for reconstructing a 3D virtual replica of an artifact by simply taking several photos of the artifact itself from different points of view. The 3D model can be used either for documenting the artifact or for preserving its geometrical information and appearance. Moreover, by using a digital 3D model is extremely easy sharing information with the public and researchers without physically moving the artifact, and this represents a unique opportunity which cannot be achieved with traditional methods. Unfortunately most systems already present on the market are complex and costly both due to their hardware and software. This paper presents a novel acquisition system which is extremely cheap and can be easily arranged in any conservation laboratory. The solution is based on a simple acquisition system designed with the aim of providing researchers with a user-friendly and low-cost platform for the reconstruction of an artifact 3D model. The proposed system can be virtually interfaced to every commercial camera and can be integrated with several 3D reconstruction software. As an example, the authors employed a free open-source software referred to as Meshroom
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
Gas detectors for elementary particles require F-based gases for optimal performance.
Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or
banned. This work studies properties of potential eco-friendly gas replacements by computing the
physical and chemical parameters relevant for use as detector media, and suggests candidates to be
considered for experimental investigation
Candidate eco-friendly gas mixtures for MPGDs
Modern gas detectors for detection of particles require F-based gases for optimal performance.Recent regulations demand the use of environmentally unfriendly F-based gases t o be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements
Corrosion prediction of metallic cultural heritage assets by EIS
Electrochemical Impedance Spectroscopy (EIS) was used to predict corrosion behaviour of metallic Cultural Heritage assets in two monitoring campaigns: 1) an iron bar chain exposed indoor from over 500 years in the Notre Dame Cathedral in Amiens (France); and 2) a large weathering steel sculpture exposed outdoor from tens of years in Ferrara (Italy). The EIS portable instrument employed was battery operated. In situ EIS measurements on the iron chain could be used to investigate the phenomena involved in the electrochemical interfaces among various corrosion products and assess and predict their corrosion behaviour in different areas of the Cathedral. Meanwhile, the sculpture of weathering steel, like most outdoor artefacts, showed rust layers of different chemical composition and colour depending on the orientation of metal plates. The EIS monitoring campaign was carried out on different areas of the artefact surface, allowing assessment of their protective effectiveness. Results of EIS measurements evidenced how employing a simple test that could be performed in situ without damaging the artefacts surface is possible to quickly gain knowledge of the conservation state of an artefact and highlight potential danger conditions
- ā¦