35 research outputs found

    Journal Staff

    Get PDF
    An important part of mathematics is the construction of good definitions. Some things, like planar graphs, are trivial to define, and other concepts, like compact sets, arise from putting a name on often used requirements (although the notion of compactness has changed over time to be more general). In other cases, such as in set theory, the natural definitions may yield undesired and even contradictory results, and it can be necessary to use a more complicated formalization.    The notion of a curve falls in the latter category. While it is intuitively clear what a curve is – line segments, empty geometric shapes, and squiggles like this: – it is not immediately clear how to make a general definition of curves. Their most obvious characteristic is that they have no width, so one idea may be to view curves as what can be drawn with a thin pen. This definition, however, has the weakness that even such a line has the ability to completely fill a square, making it a bad definition of curves. Today curves are generally defined by the condition of having no width, that is, being one-dimensional, together with the conditions of being compact and connected, to avoid strange cases.    In this thesis we investigate this definition and a few examples of curves

    Some local--global phenomena in locally finite graphs

    Full text link
    In this paper we present some results for a connected infinite graph GG with finite degrees where the properties of balls of small radii guarantee the existence of some Hamiltonian and connectivity properties of GG. (For a vertex ww of a graph GG the ball of radius rr centered at ww is the subgraph of GG induced by the set Mr(w)M_r(w) of vertices whose distance from ww does not exceed rr). In particular, we prove that if every ball of radius 2 in GG is 2-connected and GG satisfies the condition dG(u)+dG(v)≥∣M2(w)∣−1d_G(u)+d_G(v)\geq |M_2(w)|-1 for each path uwvuwv in GG, where uu and vv are non-adjacent vertices, then GG has a Hamiltonian curve, introduced by K\"undgen, Li and Thomassen (2017). Furthermore, we prove that if every ball of radius 1 in GG satisfies Ore's condition (1960) then all balls of any radius in GG are Hamiltonian.Comment: 18 pages, 6 figures; journal accepted versio

    On star edge colorings of bipartite and subcubic graphs

    Full text link
    A star edge coloring of a graph is a proper edge coloring with no 22-colored path or cycle of length four. The star chromatic index χst′(G)\chi'_{st}(G) of GG is the minimum number tt for which GG has a star edge coloring with tt colors. We prove upper bounds for the star chromatic index of complete bipartite graphs; in particular we obtain tight upper bounds for the case when one part has size at most 33. We also consider bipartite graphs GG where all vertices in one part have maximum degree 22 and all vertices in the other part has maximum degree bb. Let kk be an integer (k≥1k\geq 1), we prove that if b=2k+1b=2k+1 then χst′(G)≤3k+2\chi'_{st}(G) \leq 3k+2; and if b=2kb=2k, then χst′(G)≤3k\chi'_{st}(G) \leq 3k; both upper bounds are sharp. Finally, we consider the well-known conjecture that subcubic graphs have star chromatic index at most 66; in particular we settle this conjecture for cubic Halin graphs.Comment: 18 page

    Extending partial edge colorings of iterated cartesian products of cycles and paths

    Full text link
    We consider the problem of extending partial edge colorings of iterated cartesian products of even cycles and paths, focusing on the case when the precolored edges satisfy either an Evans-type condition or is a matching. In particular, we prove that if G=C2kdG=C^d_{2k} is the ddth power of the cartesian product of the even cycle C2kC_{2k} with itself, and at most 2d−12d-1 edges of GG are precolored, then there is a proper 2d2d-edge coloring of GG that agrees with the partial coloring. We show that the same conclusion holds, without restrictions on the number of precolored edges, if any two precolored edges are at distance at least 44 from each other. For odd cycles of length at least 55, we prove that if G=C2k+1dG=C^d_{2k+1} is the ddth power of the cartesian product of the odd cycle C2k+1C_{2k+1} with itself (k≥2k\geq2), and at most 2d2d edges of GG are precolored, then there is a proper (2d+1)(2d+1)-edge coloring of GG that agrees with the partial coloring. Our results generalize previous ones on precoloring extension of hypercubes [Journal of Graph Theory 95 (2020) 410--444]

    Dissemination of Escherichia coli with CTX-M Type ESBL between Humans and Yellow-Legged Gulls in the South of France

    Get PDF
    Extended Spectrum beta-Lactamase (ESBL) producing Enterobacteriaceae started to appear in the 1980s, and have since emerged as some of the most significant hospital-acquired infections with Escherichia coli and Klebsiella being main players. More than 100 different ESBL types have been described, the most widespread being the CTX-M beta-lactamase enzymes (bla(CTX-M) genes). This study focuses on the zoonotic dissemination of ESBL bacteria, mainly CTX-M type, in the southern coastal region of France. We found that the level of general antibiotic resistance in single randomly selected E. coli isolates from wild Yellow-legged Gulls in France was high. Nearly half the isolates (47.1%) carried resistance to one or more antibiotics (in a panel of six antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. In an ESBL selective screen, 9.4% of the gulls carried ESBL producing bacteria and notably, 6% of the gulls carried bacteria harboring CTX-M-1 group of ESBL enzymes, a recently introduced and yet the most common clinical CTX-M group in France. Multi locus sequence type and phylogenetic group designations were established for the ESBL isolates, revealing that birds and humans share E. coli populations. Several ESBL producing E. coli isolated from birds were identical to or clustered with isolates with human origin. Hence, wild birds pick up E. coli of human origin, and with human resistance traits, and may accordingly also act as an environmental reservoir and melting pot of bacterial resistance with a potential to re-infect human populations

    Local Conditions for Cycles in Graphs

    No full text
    A Hamilton cycle in a graph is a cycle that passes through every vertex of the graph. A graph is called Hamiltonian if it contains such a cycle. The problem of determining if a graph is Hamiltonian has been studied extensively, and there are many known sufficient conditions for Hamiltonicity. A large portion of these conditions relate the degrees of vertices of the graph to the number of vertices in the entire graph, and thus they can only apply to a limited set of graphs with high edge density. In a series of papers, Asratian and Khachatryan developed local analogues of some of these criteria. These results do not suffer from the same drawbacks as their global counterparts, and apply to wider classes of graphs. In this thesis we study this approach of creating local conditions for Hamiltonicity, and use it to develop local analogues of some classic results. We also study how local criteria can influence other global properties of graphs. Finally, we will see how these local conditions can allow us to extend theorems on Hamiltonicity to infinite graphs

    Some cyclic properties of graphs with local Ore-type conditions

    No full text
    A Hamilton cycle in a graph is a cycle that passes through every vertex of the graph. A graph is called Hamiltonian if it contains such a cycle. In this thesis we investigate two classes of graphs, defined by local criteria. Graphs in these classes, with a simple set of exceptions K, were proven to be Hamiltonian by Asratian, Broersma, van den Heuvel, and Veldman in 1996 and by Asratian in 2006, respectively. We prove here that in addition to being Hamiltonian, graphs in these classes have stronger cyclic properties. In particular, we prove that if a graph G belongs to one of these classes, then for each vertex x in G there is a sequence of cycles such that each cycle contains the vertex x, and the shortest cycle in the sequence has length at most 5; the longest cycle in the sequence is a Hamilton cycle (unless G belongs to the set of exceptions K, in which case the longest cycle in the sequence contains all but one vertex of G); each cycle in the sequence except the first contains all vertices of the previous cycle, and at most two other vertices. Furthermore, for each edge e in G that does not lie on a triangle, there is a sequence of cycles with the same three properties, such that each cycle in the sequence contains the edge e

    Remarkable curves in the Euclidean plane

    No full text
    An important part of mathematics is the construction of good definitions. Some things, like planar graphs, are trivial to define, and other concepts, like compact sets, arise from putting a name on often used requirements (although the notion of compactness has changed over time to be more general). In other cases, such as in set theory, the natural definitions may yield undesired and even contradictory results, and it can be necessary to use a more complicated formalization.    The notion of a curve falls in the latter category. While it is intuitively clear what a curve is – line segments, empty geometric shapes, and squiggles like this: – it is not immediately clear how to make a general definition of curves. Their most obvious characteristic is that they have no width, so one idea may be to view curves as what can be drawn with a thin pen. This definition, however, has the weakness that even such a line has the ability to completely fill a square, making it a bad definition of curves. Today curves are generally defined by the condition of having no width, that is, being one-dimensional, together with the conditions of being compact and connected, to avoid strange cases.    In this thesis we investigate this definition and a few examples of curves
    corecore