872 research outputs found

    Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite from Solution

    Full text link
    In the ongoing intense quest to increase the photoconversion efficiencies of lead halide perovskites, it has become evident that optimizing the morphology of the material is essential to achieve high peformance. Despite the fact that nucleation plays a key role in controlling the crystal morphology, very little is known about the nucleation and crystal growth processes. Here, we perform metadynamics simulations of nucleation of methylammonium lead triiodide (MAPI) in order to unravel the atomistic details of perovskite crystallization from a Îł\gamma-butyrolactone solution. The metadynamics trajectories show that the nucleation process takes place in several stages. Initially, dense amorphous clusters mainly consisting of lead and iodide appear from the homogeneous solution. These clusters evolve into lead iodide (PbI2_{2}) like structures. Subsequently, methylammonium (MA+^{+}) ions diffuse into this PbI2_{2}-like aggregates triggering the transformation into a perovskite crystal through a solid-solid transformation. Demonstrating the crucial role of the monovalent cations in crystallization, our simulations provide key insights into the evolution of the perovskite microstructure which is essential to make high-quality perovskite based solar cells and optoelectronics

    Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering

    Get PDF
    We report a quantum mechanical investigation on the nature of electronic trap states in realistic models of individual and sintered anatase TiO2 nanocrystals (NCs) of ca. 3 nm diameter. We ïŹnd unoccupied electronic states of lowest energy to be localized within the central part of the NCs, and to originate from under-coordinated surface Ti atoms lying mainly at the edges between the (100) and (101) facets. These localized states are found at about 0.3–0.4 eV below the fully delocalized conduction band states, in good agreement with both electrochemical and spectro-electrochemical results. The overall DensityOf-States (DOS) below the conduction band (CB) can be accurately ïŹtted to an exponential distribution of states, in agreement with capacitance data. Water molecules adsorbed on the NC surface raise the energy and reduce the number of localized states, thus modifying the DOS. As a possible origin of additional trap states, we further investigated the oriented attachment of two TiO2 NCs at various possible interfaces. For the considered models, we found only minor diïŹ€erences between the DOS of two interacting NCs and those of the individual constituent NCs. Our results point at the presence of inherent trap states even in perfectly stoichiometric and crystalline TiO2 NCs due to the unavoidable presence of under-coordinated surface Ti(IV) ions at the (100) facets

    Ionic polarization-induced current-voltage hysteresis in ch3nh3pbx3 perovskite solar cells

    Get PDF
    CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current–voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MAĂŸ rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells

    Revealing and Accelerating Slow Electron Transport in Amorphous Molybdenum Sulphide Particles for Hydrogen Evolution Reaction

    Get PDF
    Electrochemical impedance spectroscopy is used to identify a slow electron transport process in hydrogen evolution catalysed by amorphous molybdenum sulphides on glassy carbon. A new chemical synthesis leads to an amorphous molybdenum sulfide catalyst with a higher electronic conductivity

    CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes

    Get PDF
    Redox couples based on cobalt complexes were found to be effective in regenerating both inorganic CdSe quantum dot-and organic dye-sensitizers. The hybrid sensitizer composed of CdSe QD and ruthenium sensitizer (Z907Na) dye showed a maximum power conversion efficiency of 4.76% on using cobalt(o-phen)(3)(2+/3+) as a common redox mediator.close202

    Solid-state carbon-13 NMR and computational characterization of the N719 ruthenium sensitizer adsorbed on TiO2 nanoparticles

    Get PDF
    The ruthenium-containing sensitizing dye N719 grafted on TiO2 nanoparticles was investigated by solidstate NMR. The carbon resonances are assigned by means of 13C cross-polarized dipolar dephasing experiments. DFT calculations of the carbon magnetic shielding tensors accurately describe the changes in chemical shifts observed upon grafting onto a titania surface via one or two carboxylic functions in the plane defined by the two isothiocyanate group

    Butyronitrile-based electrolyte for dye-sensitized solar cells

    Get PDF
    We elaborated a new electrolyte composition, based on butyronitrile solvent, that exhibits low volatility for use in dye-sensitized solar cells. The strong point of this new class of electrolyte is that it combines high efficiency and excellent stability properties, while having all the physical characteristics needed to pass the IEC 61646 stability test protocol. In this work, we also reveal a successful approach to control, in a sub-Nernstian way, the energetics of the distribution of the trap states without harming cell stability by means of incorporating NaI in the electrolyte, which shows good compatibility with butyronitrile. These excellent features, in conjunction with the recently developed thiophene-based C106 sensitizer, have enabled us to achieve a champion cell exhibiting 10.0% and even 10.2% power conversion efficiency (PCE) under 100 and 51.2 mW cm-2 incident solar radiation intensity, respectively. We reached >95% retention of PCE while displaying as high as 9.1% PCE after 1000 h of 100 mW cm-2 light-soaking exposure at 60 °C

    Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy

    Get PDF
    We present a systematic study on the effects of electrodeposition parameters on the photoelectrochemical properties of Cu2O. The influence of deposition variables (temperature, pH, and deposition current density) on conductivity has been widely explored in the past for this semiconductor, but the optimization of the electrodeposition process for the photoelectrochemical response in aqueous solutions under AM 1.5 illumination has received far less attention. In this work, we analyze the photoactivity of Cu2O films deposited at different conditions and correlate the photoresponse to morphology, film orientation, and electrical properties. The photoelectrochemical response was measured by linear sweep voltammetry under chopped simulated AM 1.5 illumination. The highest photocurrent obtained was −2.4 mA cm−2 at 0.25 V vs RHE for a film thickness of 1.3 ÎŒm. This is the highest reported value reached so far for this material in an aqueous electrolyte under AM 1.5 illumination. The optical and electrical properties of the most photoactive electrode were investigated by UV−vis spectroscopy and electrochemical impedance, while the minority carrier lifetime and diffusion length were measured by optical-pump THz-probe spectroscopy
    • 

    corecore