398 research outputs found

    Evidence for a Second Order Phase Transition in Glasses at Very Low Temperatures -- A Macroscopic Quantum State of Tunneling Systems

    Full text link
    Dielectric measurements at very low temperature indicate that in a glass with the eutectic composition BaO-Al2_2O3_3-SiO2_2 a phase transition occurs at 5.84 mK. Below that temperature small magnetic fields of the order of 10 μ\muT cause noticeable changes of the dielectric constant although the glass is insensitive to fields up to 20 T above 10 mK. The experimental findings may be interpreted as the signature of the formation of a new phase in which many tunneling systems perform a coherent motion resulting in a macroscopic wave function.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Einführung

    Get PDF

    Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO

    Full text link
    We describe here the properties expected of a higher (with emphasis on the order fourth) order phase transition. The order is identified in the sense first noted by Ehrenfest, namely in terms of the temperature dependence of the ordered state free energy near the phase boundary. We have derived an equation for the phase boundary in terms of the discontinuities in thermodynamic observables, developed a Ginzburg-Landau free energy and studied the thermodynamic and magnetic properties. We also discuss the current status of experiments on Ba0.6K0.4BiO3Ba_{0.6}K_{0.4}BiO_3 and other BiO3BiO_3 based superconductors, the expectations for parameters and examine alternative explanations of the experimental results.Comment: 18 pages, no figure

    Quasiparticle Density of States of Clean and Dirty s-Wave Superconductors in the Vortex State

    Full text link
    The quasiparticle density of states (DOS) in the vortex state has been probed by specific heat measurements under magnetic fields (H) for clean and dirty s-wave superconductors, Y(Ni1-xPtx)2B2C and Nb1-xTaxSe2. We find that the quasiparticle DOS per vortex is appreciably H-dependent in the clean-limit superconductors, while it is H-independent in the dirty superconductors as expected from a conventional rigid normal electron core picture. We discuss possible origins for our observations in terms of the shrinking of the vortex core radius with increasing H.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jpn. Vol. 68 No.

    Absence of Persistent Magnetic Oscillations in Type-II Superconductors

    Full text link
    We report on a numerical study intended to examine the possibility that magnetic oscillations persist in type II superconductors beyond the point where the pairing self-energy exceeds the normal state Landau level separation. Our work is based on the self-consistent numerical solution for model superconductors of the Bogoliubov-deGennes equations for the vortex lattice state. In the regime where the pairing self-energy is smaller than the cyclotron energy, magnetic oscillations resulting from Landau level quantization are suppressed by the broadening of quasiparticle Landau levels due to the non-uniform order parameter of the vortex lattice state, and by splittings of the quasiparticle bands. Plausible arguments that the latter effect can lead to a sign change of the fundamental harmonic of the magnetic oscillations when the pairing self-energy is comparable to the cyclotron energy are shown to be flawed. Our calculations indicate that magnetic oscillations are strongly suppressed once the pairing self-energy exceeds the Landau level separation.Comment: 7 pages, revtex, 7 postscript figure

    Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03

    Get PDF
    Thermodynamic (specific heat, reversible magnetization, tunneling spectroscopy) and transport measurements have been performed on high quality (K,Ba)BiO3_3 single crystals. The temperature dependence of the magnetic field HCpH_{Cp} corresponding to the onset of the specific heat anomaly presents a clear positive curvature. HCpH_{Cp} is significantly smaller than the field HΔH_\Delta for which the superconducting gap vanishes but is closely related to the irreversibility line deduced from transport data. Moreover, the temperature dependence of the reversible magnetization present a strong deviation from the Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting transition in this material.Comment: 4 pages, 4 figures, 28 reference

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200

    Electron Dephasing in Mesoscopic Metal Wires

    Full text link
    The low-temperature behavior of the electron phase coherence time, τϕ\tau_{\phi}, in mesoscopic metal wires has been a subject of controversy recently. Whereas theory predicts that τϕ(T)\tau_{\phi}(T) in narrow wires should increase as T2/3T^{-2/3} as the temperature TT is lowered, many samples exhibit a saturation of τϕ\tau_{\phi} below about 1 K. We review here the experiments we have performed recently to address this issue. In particular we emphasize that in sufficiently pure Ag and Au samples we observe no saturation of τϕ\tau_{\phi} down to our base temperature of 40 mK. In addition, the measured magnitude of τϕ\tau_{\phi} is in excellent quantitative agreement with the prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We discuss possible explanations why saturation of τϕ\tau_{\phi} is observed in many other samples measured in our laboratory and elsewhere, and answer the criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"

    Full text link
    We consider a system of coupled classical harmonic oscillators with spatially fluctuating nearest-neighbor force constants on a simple cubic lattice. The model is solved both by numerically diagonalizing the Hamiltonian and by applying the single-bond coherent potential approximation. The results for the density of states g(ω)g(\omega) are in excellent agreement with each other. As the degree of disorder is increased the system becomes unstable due to the presence of negative force constants. If the system is near the borderline of stability a low-frequency peak appears in the reduced density of states g(ω)/ω2g(\omega)/\omega^2 as a precursor of the instability. We argue that this peak is the analogon of the "boson peak", observed in structural glasses. By means of the level distance statistics we show that the peak is not associated with localized states

    Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor

    Full text link
    We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor'kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eight order against an exact numerical solution of the corresponding Bogoliubov-de Gennes equations. The perturbation theory is found to describe the onset of superconductivity well close to the transition point Hc2H_{c2}. Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA-oscillations below Hc2H_{c2}. Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore we have investigated the recently debated issue of a possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004. Several sections changed or added, including a section on the effect of spin and the effect of a conserved number of particles. To be published in Phys. Rev.
    corecore