398 research outputs found
Evidence for a Second Order Phase Transition in Glasses at Very Low Temperatures -- A Macroscopic Quantum State of Tunneling Systems
Dielectric measurements at very low temperature indicate that in a glass with
the eutectic composition BaO-AlO-SiO a phase transition occurs at
5.84 mK. Below that temperature small magnetic fields of the order of 10 T
cause noticeable changes of the dielectric constant although the glass is
insensitive to fields up to 20 T above 10 mK. The experimental findings may be
interpreted as the signature of the formation of a new phase in which many
tunneling systems perform a coherent motion resulting in a macroscopic wave
function.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO
We describe here the properties expected of a higher (with emphasis on the
order fourth) order phase transition. The order is identified in the sense
first noted by Ehrenfest, namely in terms of the temperature dependence of the
ordered state free energy near the phase boundary. We have derived an equation
for the phase boundary in terms of the discontinuities in thermodynamic
observables, developed a Ginzburg-Landau free energy and studied the
thermodynamic and magnetic properties. We also discuss the current status of
experiments on and other based superconductors,
the expectations for parameters and examine alternative explanations of the
experimental results.Comment: 18 pages, no figure
Quasiparticle Density of States of Clean and Dirty s-Wave Superconductors in the Vortex State
The quasiparticle density of states (DOS) in the vortex state has been probed
by specific heat measurements under magnetic fields (H) for clean and dirty
s-wave superconductors, Y(Ni1-xPtx)2B2C and Nb1-xTaxSe2. We find that the
quasiparticle DOS per vortex is appreciably H-dependent in the clean-limit
superconductors, while it is H-independent in the dirty superconductors as
expected from a conventional rigid normal electron core picture. We discuss
possible origins for our observations in terms of the shrinking of the vortex
core radius with increasing H.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jpn. Vol. 68 No.
Absence of Persistent Magnetic Oscillations in Type-II Superconductors
We report on a numerical study intended to examine the possibility that
magnetic oscillations persist in type II superconductors beyond the point where
the pairing self-energy exceeds the normal state Landau level separation. Our
work is based on the self-consistent numerical solution for model
superconductors of the Bogoliubov-deGennes equations for the vortex lattice
state. In the regime where the pairing self-energy is smaller than the
cyclotron energy, magnetic oscillations resulting from Landau level
quantization are suppressed by the broadening of quasiparticle Landau levels
due to the non-uniform order parameter of the vortex lattice state, and by
splittings of the quasiparticle bands. Plausible arguments that the latter
effect can lead to a sign change of the fundamental harmonic of the magnetic
oscillations when the pairing self-energy is comparable to the cyclotron energy
are shown to be flawed. Our calculations indicate that magnetic oscillations
are strongly suppressed once the pairing self-energy exceeds the Landau level
separation.Comment: 7 pages, revtex, 7 postscript figure
Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03
Thermodynamic (specific heat, reversible magnetization, tunneling
spectroscopy) and transport measurements have been performed on high quality
(K,Ba)BiO single crystals. The temperature dependence of the magnetic field
corresponding to the onset of the specific heat anomaly presents a
clear positive curvature. is significantly smaller than the field
for which the superconducting gap vanishes but is closely related to
the irreversibility line deduced from transport data. Moreover, the temperature
dependence of the reversible magnetization present a strong deviation from the
Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting
transition in this material.Comment: 4 pages, 4 figures, 28 reference
Optically induced coherent intra-band dynamics in disordered semiconductors
On the basis of a tight-binding model for a strongly disordered semiconductor
with correlated conduction- and valence band disorder a new coherent dynamical
intra-band effect is analyzed. For systems that are excited by two, specially
designed ultrashort light-pulse sequences delayed by tau relatively to each
other echo-like phenomena are predicted to occur. In addition to the inter-band
photon echo which shows up at exactly t=2*tau relative to the first pulse, the
system responds with two spontaneous intra-band current pulses preceding and
following the appearance of the photon echo. The temporal splitting depends on
the electron-hole mass ratio. Calculating the population relaxation rate due to
Coulomb scattering, it is concluded that the predicted new dynamical effect
should be experimentally observable in an interacting and strongly disordered
system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200
Electron Dephasing in Mesoscopic Metal Wires
The low-temperature behavior of the electron phase coherence time,
, in mesoscopic metal wires has been a subject of controversy
recently. Whereas theory predicts that in narrow wires should
increase as as the temperature is lowered, many samples exhibit
a saturation of below about 1 K. We review here the experiments
we have performed recently to address this issue. In particular we emphasize
that in sufficiently pure Ag and Au samples we observe no saturation of
down to our base temperature of 40 mK. In addition, the measured
magnitude of is in excellent quantitative agreement with the
prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We
discuss possible explanations why saturation of is observed in
many other samples measured in our laboratory and elsewhere, and answer the
criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"
We consider a system of coupled classical harmonic oscillators with spatially
fluctuating nearest-neighbor force constants on a simple cubic lattice. The
model is solved both by numerically diagonalizing the Hamiltonian and by
applying the single-bond coherent potential approximation. The results for the
density of states are in excellent agreement with each other. As
the degree of disorder is increased the system becomes unstable due to the
presence of negative force constants. If the system is near the borderline of
stability a low-frequency peak appears in the reduced density of states
as a precursor of the instability. We argue that this peak
is the analogon of the "boson peak", observed in structural glasses. By means
of the level distance statistics we show that the peak is not associated with
localized states
Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor
We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a
type-II two-dimensional superconductor within a self-consistent Gor'kov
perturbation scheme. Assuming that the order parameter forms a vortex lattice
we can calculate the expansion coefficients exactly to any order. We have
tested the results of the perturbation theory to fourth and eight order against
an exact numerical solution of the corresponding Bogoliubov-de Gennes
equations. The perturbation theory is found to describe the onset of
superconductivity well close to the transition point . Contrary to
earlier calculations by other authors we do not find that the perturbative
scheme predicts any maximum of the dHvA-oscillations below . Instead we
obtain a substantial damping of the magnetic oscillations in the mixed state as
compared to the normal state. We have examined the effect of an oscillatory
chemical potential due to particle conservation and the effect of a finite
Zeeman splitting. Furthermore we have investigated the recently debated issue
of a possibility of a sign change of the fundamental harmonic of the magnetic
oscillations. Our theory is compared with experiment and we have found good
agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004.
Several sections changed or added, including a section on the effect of spin
and the effect of a conserved number of particles. To be published in Phys.
Rev.
- …