4 research outputs found
Multivalent iminosugars to modulate affinity and selectivity for glycosidases.
International audienceA series of mono-, di- and tri-valent iminosugars based on oligoethylene scaffolds and N-substituted deoxynojirymicin epitopes have been synthesized by click chemistry to study the effect of multivalency on glycosidase inhibition. Biological evaluation evidenced differences in the inhibition trends as a function of the enzyme nature. The results demonstrate that multivalency can be used in some case to modulate both the affinity and the selectivity of glycosidase inhibition
Glycodendrimers: versatile tools for nanotechnology
Combining nanotechnology with glycobiology has triggered an exponential growth of research activities in the design of novel functional bionanomaterials (glyconanotechnology). More specifically, recent synthetic advances towards the tailored and versatile design of glycosylated nanoparticles namely glyconanoparticles, considered as synthetic mimetics of natural glycoconjugates, paved the way toward diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shapes, sizes, and organized around stable nanoparticles have readily contributed to their development and applications in nanomedicine. In this context, glycosylated gold-nanoparticles (GNPs), glycosylated quantum dots (QDs), fullerenes, single-wall natotubes (SWNTs), and self-assembled glycononanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention to afford powerful imaging, therapeutic, and biodiagnostic devices. This review will provide an overview of the most recent syntheses and applications of glycodendrimers in glycoscience that have permitted to deepen our understanding of multivalent carbohydrate-protein interactions. Together with synthetic breast cancer vaccines, inhibitors of bacterial adhesions to host tissues including sensitive detection devices, these novel bionanomaterials are finding extensive relevance