337 research outputs found

    Deep optical observations of the central X-ray source in the Puppis A supernova remnant

    Full text link
    X-ray observations reveiled a group of radio-silent isolated neutron stars (INSs) at the centre of young supernova remnants (SNRs), dubbed central compact objects or CCOs, with properties different from those of classical rotation-powered pulsars. In at least three cases, evidence points towards CCOs being low-magnetized INSs, born with slow rotation periods, and possibly accreting from a debris disc of material formed out of the supernova event. Understanding the origin of the diversity of the CCOs can shed light on supernova explosion and neutron star formation models. Optical/infrared (IR) observations are crucial to test different CCO interpretations. The aim of our work is to perform a deep optical investigation of the CCO RX J0822.0-4300 in the Puppis A SNR, one of the most poorly understood in the CCO family. By using as a reference the Chandra X-ray coordinates of RX J0822.0-4300, we performed deep optical observations in the B, V and I bands with the Very Large Telescope (VLT). We found no candidate optical counterpart within 3 sigma of the computed Chandra X-ray position down to 5 sigma limits of B~27.2, V~26.9, and I~25.6, the deepest obtained in the optical band for this source. These limits confirm the non-detection of a companion brighter than an M5 dwarf. At the same time, they do not constrain optical emission from the neutron star surface, while emission from the magnetosphere would require a spectral break in the optical/IR.Comment: 4 pages, 2 figures, Astronomy and Astrophysics, accepte

    Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    Get PDF
    We report the discovery of PSR J2022+3842, a 24 ms radio and X-ray pulsar in the supernova remnant G76.9+1.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity Edot = 1.2 x 10^{38} erg/s, a surface dipole magnetic field strength B_s = 1.0 x 10^{12} G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta-f / f ~= 1.9 x 10^{-6}) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of SNR G76.9+1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N_H = (1.7\pm0.3) x 10^{22} cm^{-2} and photon index Gamma = 1.0\pm0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L_X(2-10 keV) = 7.0 x 10^{33} erg s^{-1}. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, L_X/Edot = 5.9 x 10^{-5}.Comment: 8 pages in emulateapj format. Minor changes (including a shortened abstract) to reflect the version accepted for publicatio

    ASCA observations of the young rotation-powered pulsars PSR B1046-58 and PSR B1610-50

    Get PDF
    We present X-ray observations of two young energetic radio pulsars, PSRs B1046-58 and B1610-50, and their surroundings, using archival data from the Advanced Satellite for Cosmology and Astrophysics (ASCA). The energetic pulsar PSR B1046-58 is detected in X-rays with a significance of 4.5 sigma. The unabsorbed flux, estimated assuming a power-law spectrum and a neutral hydrogen column density N_H of 5E21 cm^-2 is (2.5 +/- 0.3) x 10E-13 ergs/cm^2/s in the 2-10 keV band. Pulsed emission is not detected; the pulsed fraction is less than 31% at the 90% confidence level for a 50% duty cycle. We argue that the emission is best explained as originating from a pulsar-powered synchrotron nebula. The X-ray counterpart of the pulsar is the only hard source within the 95% error region of the previously unidentified gamma-ray source 3EG J1048-5840. This evidence supports the results of Kaspi et al. (1999), who in a companion paper, suggest that PSR B1046-58 is the counterpart to 3EG J1048-5840. X-ray emission from PSR B1610-50 is not detected. Using similar assumptions as above, the derived 3 sigma upper limit for the unabsorbed 2-10 keV X-ray flux is 1.5E-13 ergs/cm^2/s. We use the flux limit to estimate the pulsar's velocity to be less than ~170 km/s, casting doubt on a previously reported association between PSR B1610-50 and supernova remnant Kes 32. Kes 32 is detected, as is evident from the correlation between X-ray and radio emission. The ASCA images of PSR B1610-50 are dominated by mirror-scattered emission from the X-ray-bright supernova remnant RCW 103, located 33' away. We find no evidence for extended emission around either pulsar, in contrast to previous reports of large nebulae surrounding both pulsars.Comment: Accepted for publication in the ApJ (v.528, pp.436-444) Correcting typo in abstract of .tex fil

    Evidence for Proportionate Partition Between the Magnetic Field and Hot Gas in Turbulent Cassiopeia A

    Get PDF
    We present a deep X-ray observation of the young Galactic supernova remnant Cas A, acquired with the ROSAT High Resolution Imager. This high dynamic range (232 ks) image reveals low-surface-brightness X-ray structure, which appears qualitatively similar to corresponding radio features. We consider the correlation between the X-ray and radio morphologies and its physical implications. After correcting for the inhomogeneous absorption across the remnant, we performed a point by point (4" resolution) surface brightness comparison between the X-ray and radio images. We find a strong (r = 0.75) log-log correlation, implying an overall relationship of log(ΣXray)(2.21±0.05)×log(Σradio)\log(\Sigma_{_{\rm X-ray}}) \propto (2.21\pm0.05) \times \log(\Sigma_{_{\rm radio}}). This is consistent with proportionate partition (and possibly equipartition) between the local magnetic field and the hot gas --- implying that Cas A's plasma is fully turbulent and continuously amplifying the magnetic field.Comment: 8 pages with embedded bitmapped figures, Accepted by ApJ Letters 5/1/9

    Infrared and X-ray variability of the transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report on observations aimed at searching for flux variations from the proposed IR counterpart of the Anomalous X-ray Pulsar XTE J1810-197. These data, obtained in March 2004 with the adaptive optics camera NAOS-CONICA at the ESO VLT, show that the candidate proposed by Israel et al. (2004) was fainter by Delta H=0.7+/-0.2 and Delta Ks=0.5+/-0.1 with respect to October 2003, confirming it as the IR counterpart of XTE J1810-197. We also report on an XMM-Newton observation carried out the day before the VLT observations. The 0.5-10 keV absorbed flux of the source was 2.2x10^-11 erg/s/cm^2, which is less by a factor of about two compared to the previous XMM-Newton observation on September 2003. Therefore, we conclude that a similar flux decrease took place in the X-ray and IR bands. We briefly discuss these results in the framework of the proposed mechanism(s) responsible for the IR variable emission of Anomalous X-ray Pulsars.Comment: accepted by A&A Letter
    corecore