6 research outputs found
Synthesis of 1,3,4-oxadiazole and imidazo[1,2-a]pyridine based molecular hybrids and their in vitro antituberculosis and cytotoxicity studies
1005-1018A library of novel 1,3,4-oxadiazole substituted imidazo[1,2-a]pyridine based molecular hybrids have been synthesized and evaluated against Mycobacterium tuberculosis H37Rv. Out of 59 compounds synthesized, ten compounds show activity in the range of 3.125-12.5 μM. Compound 8p is found to be most active with MIC99 value of 3.125-6.25 μM. Further, these ten compounds have also been tested for their toxicity against THP-1 cell line and are found to be non-toxic with TC50 value in the range of (10 - >50 μM) concentration
Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs
Abstract The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates
Inorganic polyphosphate accumulation suppresses the dormancy response and virulence in Mycobacterium tuberculosis
Stringent response pathways involving inorganic polyphosphate (PolyP) play an essential role in bacterial stress adaptation and virulence. The intracellular levels of PolyP are modulated by the activities of polyphosphate kinase-1 (PPK1), polyphosphate kinase-2 (PPK2), and exopolyphosphatases (PPXs). The genome of Mycobacterium tuberculosis encodes two functional PPXs, and simultaneous deletion of ppx1 and ppx2 results in a defect in biofilm formation. We demonstrate here that these PPXs cumulatively contribute to the ability of M. tuberculosis to survive in nutrient-limiting, low-oxygen growth conditions and also in macrophages. Characterization of single (Delta ppx2) and double knockout (dkppx) strains of M. tuberculosis indicated that PPX-mediated PolyP degradation is essential for establishing bacterial infection in guinea pigs. RNA-Seq-based transcriptional profiling revealed that relative to the parental strain, the expression levels of DosR regulon-regulated dormancy genes were significantly reduced in the dkppx mutant strain. In concordance, we also provide evidence that PolyP inhibits the autophosphorylation activities associated with DosT and DosS sensor kinases. The results in this study uncover that enzymes involved in PolyP homeostasis play a critical role in M. tuberculosis physiology and virulence and are attractive targets for developing more effective therapeutic interventions
Identification of small molecules targeting homoserine acetyl transferase from Mycobacterium tuberculosis and Staphylococcus aureus
There is an urgent need to validate new drug targets and identify small molecules that possess activity against both drug-resistant and drug-sensitive bacteria. The enzymes belonging to amino acid biosynthesis have been shown to be essential for growth in vitro, in vivo and have not been exploited much for the development of anti-tubercular agents. Here, we have identified small molecule inhibitors targeting homoserine acetyl transferase (HSAT, MetX, Rv3341) from M. tuberculosis. MetX catalyses the first committed step in L-methionine and S-adenosyl methionine biosynthesis resulting in the formation of O-acetyl-homoserine. Using CRISPRi approach, we demonstrate that conditional repression of metX resulted in inhibition of M. tuberculosis growth in vitro. We have determined steady state kinetic parameters for the acetylation of L-homoserine by Rv3341. We show that the recombinant enzyme followed Michaelis-Menten kinetics and utilizes both acetyl-CoA and propionyl-CoA as acyl-donors. High-throughput screening of a 2443 compound library resulted in identification of small molecule inhibitors against MetX enzyme from M. tuberculosis. The identified lead compounds inhibited Rv3341 enzymatic activity in a dose dependent manner and were also active against HSAT homolog from S. aureus. Molecular docking of the identified primary hits predicted residues that are essential for their binding in HSAT homologs from M. tuberculosis and S. aureus. ThermoFluor assay demonstrated direct binding of the identified primary hits with HSAT proteins. Few of the identified small molecules were able to inhibit growth of M. tuberculosis and S. aureus in liquid cultures. Taken together, our findings validated HSAT as an attractive target for development of new broad-spectrum anti-bacterial agents that should be effective against drug-resistant bacteria.Agency for Science, Technology and Research (A*STAR)Published versionThe authors acknowledge the intramural funding received from THSTI. RS is a recipient of Ramalingaswami fellowship and National Bioscience Award from Department of Biotechnology. RS is a recipient of DBT Wellcome Trust India Alliance Senior Fellowship. RS acknowledge THSTI, and Department of Biotechnology, Govt. of India (BT/PR29075/BRB/10/1699/2018) for funding. AS acknowledge the support by ID Labs and SigN A*STAR JCO-CDA grant (#1518251030) and Singapore-India Joint grant (#1518224018)
NU-6027 Inhibits Growth of Mycobacterium tuberculosis by Targeting Protein Kinase D and Protein Kinase G
Tuberculosis (TB) is a global health concern, and this situation has further worsened due to the emergence of drug-resistant strains and the failure of BCG vaccine to impart protection. There is an imperative need to develop highly sensitive, specific diagnostic tools, novel therapeutics, and vaccines for the eradication of TB. In the present study, a chemical screen of a pharmacologically active compound library was performed to identify antimycobacterial compounds. The phenotypic screen identified a few novel small-molecule inhibitors, including NU-6027, a known CDK-2 inhibitor. We demonstrate that NU-6027 inhibits Mycobacterium bovis BCG growth in vitro and also displayed cross-reactivity with Mycobacterium tuberculosis protein kinase D (PknD) and protein kinase G (PknG). Comparative structural and sequence analysis along with docking simulation suggest that the unique binding site stereochemistry of PknG and PknD accommodates NU-6027 more favorably than other M. tuberculosis Ser/Thr protein kinases. Further, we also show that NU-6027 treatment induces the expression of proapoptotic genes in macrophages. Finally, we demonstrate that NU-6027 inhibits M. tuberculosis growth in both macrophage and mouse tissues. Taken together, these results indicate that NU-6027 can be optimized further for the development of antimycobacterial agents