Synthesis of 1,3,4-oxadiazole and imidazo[1,2-*a*]pyridine based molecular hybrids and their *in vitro* antituberculosis and cytotoxicity studies

Shiv Shyam Maurya^a, Tannu Priya Gosain^b, Saqib Kidwai^b, Ramandeep Singh^b & Diwan S Rawat^{*a}

^a Department of Chemistry, University of Delhi, Delhi 110 007, India

^b Translational Health Science and Technology Institute, Vaccine and Infectious Disease Research Centre, Faridabad 121 001, India

E-mail: dsrawat@chemistry.du.ac.in; diwansrawat@gmail.com

Received 15 December 2018; accepted (revised) 18 July 2019

A library of novel 1,3,4-oxadiazole substituted imidazo[1,2-*a*]pyridine based molecular hybrids have been synthesized and evaluated against *Mycobacterium tuberculosis* H37Rv. Out of 59 compounds synthesized, ten compounds show activity in the range of 3.125-12.5 μ M. Compound **8p** is found to be most active with MIC₉₉ value of 3.125-6.25 μ M. Further, these ten compounds have also been tested for their toxicity against THP-1 cell line and are found to be non-toxic with TC₅₀ value in the range of (10 - >50 μ M) concentration.

Keywords: 1,3,4-Oxadiazole, imidazo[1,2-a]pyridine, anti-mycobacterial activity, cytotoxicity studies

Tuberculosis (TB), a leading infectious airborne disease predominantly caused by *Mycobacterium tuberculosis*, is one of the major causes of death from a single infectious pathogen. It is well established that the morbidity and mortality rate of TB patient is relatively higher in HIV-infected individuals. As per 2017 WHO global TB report, TB caused 1.7 million deaths in 2016 which includes 0.4 million deaths among the people co-infected with HIV and approximately 10.4 million new clinical cases of TB were reported worldwide in 2016¹. DOTS therapy is a complicated process, which requires a strict and 6-month lengthy regimen and it has suffered a huge setback due to the emergence of drug-resistant strains².

This situation has further aggravated due to ever increasing incident rates of multi drug-resistant (MDR), extensively drug-resistant (XDR) and totally drug-resistant (TDR) by Mycobacterium tuberculosis. There is an urgent need to identify novel drugs to spread of drug-resistant TB^{3-6} . the control Heterocycles in general and imidazopyridine in particular has played a significant role in the field of drug developments⁷⁻⁹. Among these, imidazo[1,2*a*]pyridine have potential biological applications such as anti-mycobacterial¹⁰⁻¹², anti-cancer^{13,14}, anti-viral¹⁵, anti-microbial¹⁶, and anti-HIV¹⁷ activity. In addition, imidazopyridine derivative such as imidazo[1,2a)pyridine amide has shown promising activity against MDR and XDR TB¹⁸⁻²¹. Recently,

imidazo[1,2-*a*]pyridine based highly innovative drug molecule Q203 (Figure 1) has been reported to possess activity against both MDR and XDR TB²² (Figure 1).

The 1,3,4-oxadiazoles is another class of heterocycle that has gained a lot of attention of medicinal chemist due to their wide range of biological activities^{23,24}, the most notable being antipyretic²⁵, analgesic and anti-inflammatory²⁶, antidepressant²⁷, antimicrobial and anti-HIV²⁸, anti-tubercular²⁹, antioxidant³⁰, central nervous system dpressant³¹, anticonvulsive³², antihypertensive³³, and anticancer activity³⁴, *etc.* In order to solve the menaces of drug resistance, a concept of molecular hybridization has gained importance in recent years^{4, 6, 35}. The molecules developed using this concept are found to have more potency and effectiveness against resistant strains than the parent drugs³⁶.

Recently imidazo[1,2-*a*]pyridine was identified *via* High Throughput Screening (HTS) as a potent antitubercular molecule active against both replicating *Mtb* H37Rv and multi- and extensively drug-resistant (XDR) *Mtb* strains^{12,18,22,37-39}. These efforts led to the identification of pre-clinical anti-TB candidate Q203 (Figure 1)²².

Keeping these points in mind and as a part of our on-going work on the development of molecular hybrids $^{40.46}$, we designed new set of molecular hybrids having imidazo[1,2-*a*]pyridine and oxadiazole as

Figure 1 — Potent derivatives containing imidazo[1,2-a]pyridines scaffolds

Figure 2 — Design strategy for the synthesis of 1,3,4-oxadiazole-imidazo[1,2-a]pyridine hybrids

active pharmacophores and evaluated them for antituberculosis activity (Figure 2).

Results and Discussion

Chemistry

The 1,3,4-oxadiazole substituted imidazo[1,2-a] pyridine hybrids were synthesized as outlined in Scheme I. In the first step, ethyl acetoacetate (1) was added to the mixture of ammonium acetate and recrystallized *N*-bromosuccinimide. The reaction mixture was stirred at RT for 12 h to give intermediate (2)⁴⁷. The intermediate 2 was

then reacted with 2-aminopyridines (3a-c) and the reaction mixture was refluxed for 12 h to give compounds $(4a-c)^{45}$ Afterwards, compounds (4a-c) were refluxed with hydrazine hydrate in EtOH for 12 h to give compounds $(5a-c)^{45}$. A solution of KOH in EtOH was taken and compounds (5a-c) were added to it in an ice bath. To the above solution, carbon disulfide was added in small portions with constant stirring. The reaction mixture was agitated continuously for a period of 3 h to give compounds (6a-c). The compounds (6a-c) were dissolved in EtOH and the reaction mixture was refluxed for 10-

Scheme I — Synthetic pathway of substituted 2-(benzylthio/alkylthio)-5-(2-methyl imidazo[1,2-a]pyridin-3-yl)-1,3,4-oxadiazole

12 h to give compounds (7a-c). To a solution of compounds (7a-c) in tetrahydrofuran were added substituted benzyl bromides or alkyl halides with Na₂CO₃ and the reaction mixture was stirred for 12h at RT to give compounds (8a-t, 9a-t, 10a-s) in moderate to good yield (Scheme I).

All the compounds were purified using silica gel column chromatography and characterized spectroscopically. The synthesized compounds were well characterized by using ¹H NMR, ¹³C NMR and mass spectral techniques (See SI). Finally, the molecular structure was established by single crystal X-Ray diffraction analysis of **10b** (Figure 3). The spectral data matches with respect to compounds.

Figure 3 — Single crystal structure of 10b (CCDC no: 1860485)

In vitro Antibacterial Activity

All the synthesized compounds were screened against H37Rv strain of TB. These compounds were grouped in three different categories (8a-8t, 9a-9t, 10a-10s) based on substitution at C-6 position of imidazo [1,2-a] pyridine. While substitution at sulphur attached to benzoxazole was varied systematically in all the cases. The first group of compounds 8a-t imidazo[1.2-*a*]pvridine has Br at C-6 position, while the second group 9a-t has Cl at C-6 position & in third group 10a-t has methyl group at C-6 position of imidazo[1,2-a]pyridine. Among all the tested compounds most of the compounds were found to be inactive up to 50 µM concentration except compounds 8n-8q (MIC₉₉ = $3.12-12.5 \mu$ M), 90-9q $(MIC_{99} = 12.5 \ \mu M)$ and **10m-10q** $(MIC_{99} = 12.5 \ \mu M)$ 50 µM). Structural analysis revealed that all these compounds (8n-8q) have alkyl group with chain length from butyl to heptyl and the activity was in the range of 3.12-12.5 µM with compound 8p being most active (MIC₉₉ = $3.12-6.25 \mu$ M). But when Br was replaced by Cl/methyl (compound 8a-t) compounds having C_4 - C_7 alkyl chain attached to 'S' the activity drops to 12.5-25 µM. In our activity assays, isoniazid control displayed MIC₉₉ value of 0.39 µM in concordance with previous reports⁴⁴ (Table I).

	Table I — <i>In vitro</i> antimycobacterial activity and cytotoxicity of the 1,3,4-oxadiazole and imidazo[1,2- <i>a</i>]pyridine hybrids		
	$ \overset{\text{Br}}{\underset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{$	(90-q)	$ \overset{Me}{\underset{N \longrightarrow O}{\overset{N \longrightarrow S}{\underset{R^1}{\overset{N \xrightarrow{N}{\underset{R^1}{\overset{N \atopS}{\underset{R^1}{\overset{N S}{\underset{R^1}{\overset{N S}{\underset{R^1}{\underset{R^1}{\overset{N}{\underset{R^1}}{\overset{N}{\underset{R^1}{\underset{R^1}{\overset{N}{\underset{R^1}}{\overset{N}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}}{\underset{R^1}{\underset{R^1}}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}}{\underset{R^1}{\underset{R^1}{\underset{R^1}}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}}}{\underset{R^1}{\underset{R^1}}}}{\overset{N}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}{\underset{R^1}}}}}{\overset{N}{\underset{R^1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
	Entry	MIC (uM)	TC values (uM)
1	en Entry	6 25 12 5	~ 50
1 2	80	6.25-12.5	>50
2	80	0.23-12.3	25
3	8p	5.12-0.25	25
4	8q	12.5	>50
5	90	12.5	>50
6	9р	12.5	>50
7	9q	12.5	>50
8	10m	25-50	-
9	10n	12.5	10
10	100	12.5-25	10
11	10p	25	-
12	10q	12.5	>50
13	Isoniazid	0.39	-

Experimental Section

Instrumentation and Chemicals

All the chemicals were purchased from Sigma-Aldrich and were used without further purification. Progress of the reactions was monitored by thin layer chromatography (Merck Kiesel 60 F254, 0.2 mm thickness) and the compounds were purified by silica gel column chromatography. IR spectra were recorded on Perkin-Elmer FT-IR spectrophotometer using KBr pellets and the values were expressed in cm^{-1} . ¹H \hat{NMR} (400 MHz) and ¹³C \hat{NMR} (100 MHz) spectra were recorded on Jeol ECX spectrospin instrument using $CDCl_3$ or $DMSO-d_6$ as solvent with TMS as internal reference. The chemical shift values were expressed on δ scale and the coupling constant (J) in Hz. Melting points were recorded on EZ-Melt automated melting point apparatus, Stanford Research Systems and are uncorrected. Mass data were recorded in Jeol-Accu TOF JMS-T100LC and micromass LCT mass spectrometer/Data system Spectrometer/Data system.

Typical procedure for the synthesis of ethyl 2bromo-3-oxobutanoate, 2^{45} : Ethyl acetoacetate (10 g, 76.8 mmol) was taken in diethyl ether (200 mL) and ammonium acetate (17.7 g, 230.5 mmol) and recrystallized *N*-bromosuccinimide (13.6 g, 76.8 mmol) were added. The reaction mixture was stirred at RT for 12 h. After completion of the reaction, as evident from TLC, the reaction mixture was washed with water. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to get the desired compound (2).

Typical procedure for the synthesis of substituted ethyl 2-methylimidazo[1,2-a]pyridine-3-carboxylate, 4a-c⁴⁵: A solution of ethyl 2-bromo-3oxobutanoate (47.8 mmol) in EtOH (200 mL) was added to a solution of substituted 2-aminopyridine (3a-c, 47.8 mmol). The mixture was stirred at reflux temperature for 12 h. After completion of the reaction, the solvent was removed from the reaction mixture. The resulting dark residue was dissolved in EtOAc and washed with water. The organic phase was washed with brine solution, dried over Na₂SO₄, and concentrated in vacuum to get a solid product. The crude residue was purified by flash column chromatography (*n*-hexane/EtOAc = 4:1) to give substituted ethyl 2-methylimidazo[1,2-a]pyridine-3carboxylate (4a-c).

Typical procedure for the synthesis of substituted 2-methylimidazo[1,2-*a*]pyridine-3-

carbohydrazide, **5a-c**⁴⁶: To a solution of substituted ethyl 2-methylimidaz[1,2-*a*]pyridine-3-carboxylate (**4a-c**, 33.6 mmol) in EtOH (200 mL) and hydrazine hydrate (134.4 mmol) was added to drop-wise and refluxed for 12 h. After cooling, the resulting precipitate was filtered, washed with EtOH and dried under vacuum to get substituted 2-methylimidazo[1,2*a*]pyridine-3-carbohydrazide (**5a-c**).

procedure for the synthesis of Typical substituted potassium 2-(2-methylimidazo[1,2-a] pyridine-3-carbonyl)hydrazinecarbodithioate, 6a-c⁴⁶: 2-methylimidazo[1,2-a]pyridine-3-Substituted carbohydrazide (5a-c, 18.6 mmol) was added slowly to KOH solution (27.9 mmol) in 120 mL EtOH in an ice bath. To the above solution, carbon disulfide (37.2 mmol) was added in small portions with constant stirring. The reaction mixture was agitated continuously for a period of 3 h. It was then diluted with anhydrous ether. The precipitated substituted potassium 2-(2-methylimidazo[1,2-a]pyridine-3carbonyl) hydrazinecarbodithioate (6a-c) was collected by filtration. The precipitate was further washed with anhydrous ether (100 mL) and dried under vacuum. The potassium salt thus obtained was used in the next step without further purification.

Typical procedure for the synthesis of substituted 5-(2-methylimidazole[1,2-*a*]pyridin-3-yl)-1,3,4-oxadiazole-2-thiol, $7a-c^{46}$: Compound (6a-c) was dissolved in EtOH (120 mL) and the reaction mixture was refluxed for 10-12 h. The progress of the reaction was monitored by TLC until completion. The solvent was evaporated, and the residue was acidified with 10% HCl. The precipitate was collected by filtration, washed with water and dried. The products substituted 5-(2-methylimidazole[1,2-a]pyridin-3-yl)-1,3,4-oxadiazole-2-thiol (7a-c) was obtained in good yield.

Typical procedure for the synthesis of substituted 2-(benzylthio/alkylthio)-5-(2-methylimidazo[1,2-*a*] pyridin-3-yl)-1,3,4-oxadiazole, 8a-t, 9a-t, 10a-s⁴⁶: To a solution of compound (7a-c) substituted 5-(2-methylimidazo[1,2-*a*]pyridin-3-yl)-1,3,4-oxadiazole-2-thiol (1.50 mmol) in tetrahydrofuran (20 mL), substituted benzyl bromides or alkyl halide (1.50 mmol) and Na₂CO₃ (4.51 mmol) were added and the reaction mixture was stirred for 12 h at RT. The reaction mixture was filtered off, washed with water, and dried over Na₂SO₄. The crude residue was purified by flash column chromatography (*n*-

hexane/EtOAc) to give substituted 2-(benzylthio/alkylthio)-5-(2-methylimidazo[1,2-a] pyridin-3-yl)-1,3,4-oxadiazole (**8a-t, 9a-t, 10a-s**).

Characterization of compounds

2-(Benzylthio)-5-(6-bromo-2-methylimidazo[1,2-a] pyridin-3-yl)-1,3,4-oxadiazole, 8a: White solid, Yield 41%. m.p. 172-174°C. IR (Film): 3064, 3003, 2360, 1957, 1708, 1631, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.56 (s, 1H), 7.54 (d, *J* = 9.1 Hz, 1H), 7.48-7.44 (m, 3H), 7.37-7.30 (m, 3H), 4.54 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.38, 158.94, 148.74, 145.17, 135.44, 130.62, 129.05, 128.83, 128.16, 127.84, 117.24, 108.68, 107.68, 36.97, 15.46; HRMS Calcd for C₁₇H₁₃BrN₄OS: *m/z* 400.0008. Found: 401.0082 (M + H)⁺, 403.0062 (MH+2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((4-nitrobenzyl)thio)-1,3,4-oxadiazole, 8b**: White solid, Yield 43%. m.p. 178-180°C. IR (Film): 3082, 2926, 2852, 2453, 2360, 1938, 1739, 1629, 1600 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 8.23-8.21 (m, 2H), 7.71-7.69 (m, 2H), 7.56 (d, *J* = 9.9 Hz, 1H), 7.49-7.46 (m, 1H), 4.60 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.65, 159.17, 148.99, 147.64, 143.24, 130.79, 130.05, 127.81, 123.97, 117.33, 108.80, 35.74, 15.52; HRMS Calcd for C₁₇H₁₂BrN₅O₃S: *m/z* 444.9844. Found: 445.9933. (M + H)⁺, 447.9914 (MH+2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-a]pyridin-3-yl)-5-((4-bromobenzyl)thio)-1.3,4-oxadiazole, Sc: White solid, Yield 50%. m.p. 190-192°C. IR (Film): 3064, 3001, 2922, 2852, 2360, 1950, 1793, 1741, 1627, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.54 (d, J = 9.1 Hz, 1H), 7.48-7.44 (m, 3H), 7.37 (d, J = 8.4 Hz, 2H), 4.48 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.96, 159.04, 148.84, 145.21, 134.66, 131.91, 130.74, 130.66, 127.81, 122.19, 117.26, 108.70, 15.47: 107.66. 36.18. HRMS Calcd for C₁₇H₁₂Br₂N₄OS: *m/z* 477.9083. Found: 478.9156 $(M + H)^+$, 480.9137 $(MH+2)^+$.

2-(6-Bromo-2-methylimidazo[1,2-*a*]pyridin-3-yl)-

5-((4-fluorobenzyl)thio)-1,3,4-oxadiazole, 8d: White solid, Yield 46%. m.p. 162-164°C. IR (Film): 3088, 3066 3005, 2954, 2922, 1801, 1629, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.54 (s, 1H), 7.54 (d, J = 9.1 Hz, 1H), 7.48-7.45 (m, 3H), 7.04 (t, J = 8.4 Hz, 2H), 4.51 (s, 2H), 2.70 (s, 3H); HRMS

Calcd for $C_{17}H_{12}BrFN_4OS$: *m/z* 417.9882. Found: 418.9956 (M + H)⁺, 420.9935 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((2-nitrobenzyl)thio)-1,3,4-oxadiazole, 8e**: White solid, Yield 43%. m.p. 204-206°C. IR (Film): 3032, 1629, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 8.7 Hz, 2H), 7.47 (d, J = 8.4 Hz, 1H), 4.89 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.81, 159.18, 148.99, 147.68, 145.24 134.03, 133.06, 132.52, 130.65, 129.47, 127.78, 125.75, 117.33, 108.71, 107.57, 34.62, 15.49; HRMS Calcd for C₁₇H₁₂BrN₅O₃S: *m/z* 444.9846. Found: 445.9918 (M + H)⁺, 447.9900 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((2,5-difluorobenzyl)thio)-1,3,4-oxadiazole, 8f:** White solid, Yield 55%. m.p. 166-168°C IR (Film): 3055, 2993, 2918, 2850, 1707, 1598 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.55 (s, 1H), 7.54 (d, J = 9.1 Hz, 1H), 7.46 (dd, J = 9.5, 2.3 Hz, 1H), 7.34-7.29 (m, 1H), 7.08-6.95 (m, 2H), 4.53 (s, 2H), 2.70 (s, 3H); HRMS Calcd for C₁₇H₁₁BrF₂N₄OS: *m/z* 435.9805. Found: 436.9879 (M + H)⁺, 438.9859 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(((perfluorophenyl)methyl)thio)-1,3,4-oxa diazole, 8g: White solid, Yield 45%. m.p. 132-134°C. IR (Film): 3033, 2955, 2921, 2852, 1654, 1597 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): \delta 9.57 (s, 1H), 7.57 (d,** *J* **= 9.9 Hz, 1H), 7.48 (dd,** *J* **= 9.5, 2.3 Hz, 1H), 4.59 (s, 2H), 2.73 (s, 3H); HRMS Calcd for C₁₇H₈BrF₅N₄OS:** *m/z* **489.9522. Found: 490.9598 (M + H)⁺, 492.9579 (MH + 2)⁺.**

4-(((5-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3yl)-1,3,4-oxadiazol-2-yl)thio)methyl)benzo nitrile, 8h: White solid, Yield 49%. m.p. 160-162°C. IR (Film): 3286, 3033 2231, 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 7.67-7.63 (m, 4H), 7.55 (d, J = 9.9 Hz, 1H), 7.48 (d, J = 9.9 Hz, 1H), 4.56 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.48, 159.16, 148.90, 145.22, 141.22, 132.49, 130.73, 129.82, 127.74, 118.34, 117.26, 111.94, 108.76, 107.43, 36.03, 15.46; HRMS Calcd for C₁₈H₁₂BrN₅OS:** *m/z* **424.9938. Found: 426.0011 (M + H)⁺, 427.9992 (MH + 2)⁺.**

Methyl-4-(((5-(6-bromo-2-methylimidazo[1,2-*a*] pyridin-3-yl)-1,3,4-oxadiazol-2-yl)thio) methyl) **benzoate, 8i**: White solid, Yield 40%. m.p. 195-197°C. IR (Film): 2922, 1724, 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.54 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.55 (t, *J* = 8.7 Hz, 3H), 7.46 (dd, *J* = 9.1, 2.3 Hz, 1H), 4.57 (s, 2H), 3.90 (s, 3H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.48, 161.85, 159.03, 148.79, 145.17, 140.70, 130.65, 130.02, 129.86, 129.05, 127.78, 117.22, 108.70, 107.54, 52.16, 36.39, 15.42; HRMS Calcd for C₁₉H₁₅BrN₄O₃S: *m/z* 458.0043. Found: 459.0116 (M + H)⁺, 461.0097 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((naphthalen-1-ylmethyl)thio)-1,3,4-oxa diazol, 8j: White solid, Yield 47%. m.p. 159-161°C. IR (Film): 3062, 3003, 1627, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): \delta 9.56 (s, 1H), 8.10 (d,** *J* **= 8.4 Hz, 1H), 7.89 (d,** *J* **= 7.6 Hz, 1H), 7.84 (d,** *J* **= 8.4 Hz, 1H), 7.67 (d,** *J* **= 6.8 Hz, 1H), 7.60 (t,** *J* **= 7.6 Hz, 1H), 7.55-7.51 (m, 2H), 7.47-7.41 (m, 2H), 5.04 (s, 2H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 162.59, 158.93, 148.80, 145.17, 133.91, 131.13, 130.60, 130.48, 129.39, 129.05, 128.38, 127.83, 126.77, 126.13, 125.35, 123.17, 117.24, 108.68, 107.74, 35.06, 15.44; HRMS Calcd for C₂₁H₁₅BrN₄OS:** *m/z* **450.0145. Found: 451.0218 (M + H)⁺, 453.0200 (MH + 2)⁺.**

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(ethylthio)-1,3,4-oxadiazole, 8k**: White solid, Yield 60%. m.p. 164-166°C. IR (Film): 3060, 2998, 2924, 2857, 1629, 1599 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.55 (s, 1H), 7.53 (d, *J* = 9.1 Hz, 1H), 7.44 (d, *J* = 9.1 Hz, 1H), 3.33 (q, *J* = 7.3 Hz, 2H), 2.72 (s, 3H), 1.53 (t, *J* = 7.3Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.94, 158.77, 148.63, 145.17, 130.53, 127.85, 117.24, 108.63, 107.84, 27.24, 15.45, 14.73; HRMS Calcd for C₁₂H₁₁BrN₄OS: *m*/*z* 337.9836. Found: 338.9908 (M + H)⁺, 340.9888 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(propylthio)-1,3,4-oxadiazole, 81**: White solid, Yield 61%. m.p. 144-146°C. IR (Film): 3062, 3000, 2959, 2925, 2866, 1598 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 7.54 (d, *J* = 9.6 Hz, 1H), 7.45 (dd, *J* = 9.1, 2.7, Hz, 1H), 3.31 (t, *J* = 7.1 Hz, 2H), 2.74 (s, 3H), 1.96-1.87 (m, 2H), 1.11 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.20, 158.74, 148.60, 145.17, 130.52, 127.86, 117.24, 108.63, 107.78, 34.71, 22.79, 15.43, 13.14; HRMS Calcd for C₁₃H₁₃BrN₄OS: *m/z* 351.9993. Found: 353.0065 (M + H)⁺, 355.0044 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a*]pyridin-3-yl)-5-(butylthio)-1,3,4-oxadiazole, 8m: white solid, Yield 64%. m.p. 130-132°C. IR (Film): 3027, 2923, 2855, 2319, 1743, 1600 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 7.55 (d, J = 10.0 Hz, 1H), 7.46 (dd, J = 9.6, 1.8 Hz, 1H), 3.33 (t, J = 7.5 Hz, 2H), 2.74 (s, 3H), 1.90-1.83 (m, 2H), 1.57-1.48 (m, 2H), 0.98 (t, J = 7.3Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.23, 158.74, 148.60, 145.17, 130.52, 127.86, 117.24, 108.62, 107.78, 32.53, 31.34, 21.76, 15.46, 13.47; HRMS Calcd for C₁₄H₁₅BrN₄OS: *m/z* 366.0149. Found: 367.0198 (M + H)⁺, 369.0198 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-a]pyridin-3-yl)-5-(isopentylthio)-1,3,4-oxadiazole, 8n: White solid, Yield 60%. m.p. 96-98°C. IR (Film): 3063, 3002, 2955, 2870, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 7.55 (d, J = 9.6 Hz, 1H), 7.46 (dd, J = 9.6, 1.8 Hz, 1H), 3.33 (t, J =6.8 Hz, 3H), 2.74 (s, 3H), 1.79-1.73 (m, 2H), 0.98 (d, J = 6.4Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 163.16, 158.72, 148.58, 145.14, 130.49, 127.83, 117.22, 108.61, 107.76, 38.11, 30.94, 27.45, 22.10, 15.46; HRMS Calcd for C₁₅H₁₇BrN₄OS: *m*/*z* 380.0306. Found: 381.0354 (M + H)⁺, 383.0354 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(pentylthio)-1,3,4-oxadiazole, 80**: White solid, Yield 61%. m.p. 102-104°C. IR (Film): 3078, 3025, 2921, 2850, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.46 (dd, J = 9.4, 1.8 Hz, 1H), 3.33 (t, J = 7.5 Hz, 2H), 2.74 (s, 3H), 1.92-1.85 (m, 2H), 1.51-1.34 (m, 4H), 0.93 (t, J = 7.3Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.25, 158.75, 148.61, 145.18, 130.54, 127.89, 117.26, 108.64, 107.81, 32.83, 30.37, 29.06, 22.11, 15.48, 13.88; HRMS Calcd for C₁₅H₁₇BrN₄OS: *m/z* 380.0301. Found: 381.0374 (M + H)⁺, 383.0353 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-a]pyridin-3-yl)-5-(hexylthio)-1,3,4-oxadiazole, 8p: White solid, Yield 42%. m.p. 78-80°C. IR (Film): 3069, 3007, 2919, 2855, 1713, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 7.55 (d, J = 9.9 Hz, 1H), 7.47-7.45 (m, 1H), 3.32 (t, J = 7.6 Hz, 2H), 2.74 (s, 3H), 1.91-1.84 (m, 2H), 1.53-1.46 (m, 2H), 1.36-1.21 ¹³C NMR 4H), 0.92-0.83 (m, 3H); (m, (100 MHz, CDCl₃): δ 163.25, 158.74, 148.61, 145.12, 130.54, 127.88, 117.26, 108.64, 107.79, 32.84, 31.18, 29.30, 28.29, 22.48, 15.48, 13.97; HRMS Calcd for C₁₆H₁₉BrN₄OS: *m/z* 394.0461. Found: 395.0534 $(M + H)^+$, 397.0515 $(MH + 2)^+$.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(heptylthio)-1, 3,4-oxadiazole, 8q**: White solid, Yield 42%. m.p. 77-79°C. IR (Film): 3086, 2924, 2855, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.45 (dd, J = 8.9, 1.8 Hz, 1H), 3.32 (t, J = 7.5 Hz, 2H), 2.74 (s, 3H), 1.91-1.84 (m, 2H), 1.67 (s, 2H), 1.52-1.45 (m, 2H), 1.37-1.25 (m, 4H), 0.89 (t, J = 6.4Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.00, 158.74, 148.62, 145.36, 130.55, 127.90, 117.27, 108.65, 107.76, 32.88, 31.63, 29.37, 28.69, 28.60, 22.53, 15.47, 14.01; HRMS Calcd for C₁₇H₂₁BrN₄OS: *m/z* 408.0619. Found: 409.0694 (M + H)⁺, 411.0674 (MH+2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(octylthio)-1,3, 4-oxadiazole, 8r**: White solid, Yield 42%. m.p. 88-90°C. IR (Film): 3026, 2923, 2852, 2319, 1704, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 7.55 (d, *J* = 9.1 Hz, 1H), 7.46 (dd, *J* = 9.6, 1.8 Hz, 1H), 3.32 (t, *J* = 7.1 Hz, 2H), 2.74 (s, 3H), 1.91-1.84 (m, 2H), 1.52-1.45 (m, 2H), 1.37-1.28 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.24, 158.75, 148.61, 145.18, 130.52, 127.89, 117.26, 108.62, 107.80, 32.87, 31.72, 29.36, 29.09, 28.98, 28.63, 22.58, 15.43, 14.04; HRMS Calcd for C₁₈H₂₃BrN₄OS: *m/z* 422.0776. Found: 423.0826 (M + H)⁺, 425.0807 (MH + 2)⁺.

(E)-2-(6-Bromo-2-methylimidazo[1,2-*a*]pyridin-3-yl)-5-((3,7-dimethylocta-2,6-dien-1-yl)thio) -1,3,4oxadiazole, 8s: Semi solid ,Yield 43%; IR (Film): 3080, 2922, 2853, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.48 (d, *J* = 7.4 Hz, 1H), 7.39 (dd, *J* = 9.5, 2.3Hz, 1H), 5.39 (t, *J* = 6.8 Hz, 1H), 5.00-4.97 (m, 1H), 3.92 (d, *J* = 7.6 Hz, 2H), 2.67 (s, 3H), 2.04-1.94 (m, 4H), 1.70 (s, 3H), 1.60 (s, 3H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.08, 158.88, 145.23, 143.24, 139.28, 131.92, 130.58, 127.90, 123.50, 117.26, 116.95, 114.10, 108.70, 39.50, 31.02, 29.68, 26.25, 22.55, 16.33, 15.50; HRMS Calcd for C₂₀H₂₃BrN₄OS: *m/z* 446.0775. Found: 447.0849 (M + H)⁺, 449.0830 (MH + 2)⁺.

2-(6-Bromo-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(prop-2-yn-1-ylthio)-1,3,4-oxadiazole, 8t**: White solid, Yield 57%. m.p. 158-160°C. IR (Film): 3159, 3078, 2954, 2919, 2850, 2104, 1922, 1695, 1628, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 7.56 (d, *J* = 9.9 Hz, 1H), 7.49-7.46 (m, 1H), 4.07 (d, *J* = 1.9 Hz, 2H), 2.75 (s, 3H), 2.37 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.05, 159.28, 148.98, 145.25, 130.69, 127.85, 117.26, 108.73, 107.64, 21.28, 15.49; HRMS Calcd for C₁₃H₉BrN₄OS: *m/z* 347.9680. Found: 348.9753 (M + H)⁺, 350.9733 (MH + 2)⁺.

2-(Benzylthio)-5-(6-chloro-2-methylimidazo[1,2-*a***] pyridin-3-yl)-1,3,4-oxadiazole, 9a**: White solid, Yield 63%. m.p. 157-159°C. IR (Film): 3066, 3006, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (s, 1H), 7.59 (d, *J* = 9.1 Hz, 1H), 7.48 (d, *J* = 6.8 Hz, 2H), 7.37-7.30 (m, 4H), 4.54 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.36, 158.95, 148.93, 145.08, 135.44, 129.06, 128.83, 128.45, 128.16, 125.76, 122.22, 116.95, 107.84, 36.97, 15.50; HRMS Calcd for C₁₇H₁₃ClN₄OS: *m/z* 356.0506. Found: 357.0578 (M + H)⁺, 359.0554 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((4-nitrobenzyl)thio)-1,3,40xadiazole, 9b**: White solid, Yield 57%. m.p. 186-188°C. IR (Film): 3106, 2991, 1693, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.43 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 9.1 Hz, 1H), 7.39-7.36 (m, 1H), 4.60 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.38, 159.28, 149.14, 147.58, 145.18, 143.24, 130.05, 128.62, 125.70, 123.95, 122.33, 117.02, 107.62, 35.72, 15.53; HRMS Calcd for C₁₇H₁₂ClN₅O₃S: *m/z* 401.0364. Found: 402.0437 (M + H)⁺, 404.0411 (MH + 2)⁺.

2-((4-Bromobenzyl)thio)-5-(6-chloro-2-methylimidazo[1,2-a]pyridin-3-yl)-1,3,4-oxadiazole, 9c: White solid, Yield 59%. m.p. 187-190°C. IR (Film): 3067, 3005, 1635, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.45 (s, 1H), 7.59 (d, J = 9.9 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H) 7.38-7.35 (m, 3H), 4.48 (s, 2H), 13 C NMR (100 MHz, CDCl₃) 2.70 (s, 3H); δ 161.94, 159.05, 148.99, 145.10, 134.66, 131.91, 130.74, 128.50, 125.72, 122.25, 122.19, 116.96, 107.74. 36.18. 15.49: HRMS Calcd for C₁₇H₁₂BrClN₄OS: *m/z* 433.9615. Found: 434.9687 $(M + H)^+$, 436.9667 $(MH + 2)^+$.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((4-fluorobenzyl)thio)-1,3,4-oxadiazole, 9d**: White solid, Yield 63%. m.p. 157-158°C. IR (Film): 3070, 3009, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.46 (s, 1H), 7.59 (d, J = 9.9 Hz, 1H), 7.48-7.45 (m, 2H), 7.37 (dd, J = 9.1, 2.3 Hz, 1H), 7.04 (t, J = 8.4 Hz, 2H), 4.51 (s, 2H), 2.71 (s, 3H); HRMS Calcd for C₁₇H₁₂ClFN₄OS: *m*/*z* 374.0403. Found: 375.0477 (M + H)⁺, 377.0451 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-a]pyridin-3-yl)-5-((2-nitrobenzyl)thio)-1,3,4-oxadiazole, 9e: White solid, Yield 60%. m.p. 199-201°C. IR (Film): 3085, 3026, 1634, 1600 cm¹; ¹H NMR (400 MHz, CDCl₃): δ 9.45 (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.66-7.58 (m, 2H), 7.51 (t, J = 7.6 Hz,1H), 7.36 (dd, J = 9.1, 2.3 Hz, 1H), 4.89 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.70, 159.15, 149.10, 147.46, 145.09, 134.03, 133.06, 132.50, 129.45, 128.48, 125.74, 125.65, 122.24, 116.99, 107.69, 34.59, 15.50; HRMS Calcd for C₁₇H₁₂ClN₅O₃S: *m/z* 401.0346. Found: $402.0419 (M + H)^+, 404.0393 (MH + 2)^+.$

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-((2,5-difluorobenzyl)thio)-1,3,4-oxadiazole, 9f:** White solid, Yield 59%. m.p. 152-154°C. IR (Film): 3066, 3005, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 7.59 (d, J = 9.9 Hz, 1H), 7.37 (dd, J = 9.5, 2.3 Hz, 1H), 7.34-7.30 (m, 1H), 7.08-6.95 (m, 2H), 4.53 (s, 2H), 2.71 (s, 3H); HRMS Calcd for C₁₇H₁₁ClF₂N₄OS: *m/z* 392.0315. Found: 393.0388 (M + H)⁺, 395.0363 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(((perfluorophenyl)methyl)thio)1,3,4-oxadiazole, 9g**: White solid, Yield 56%. m.p. 149-151°C. IR (Film): 3036, 2926, 2854, 1655, 1599 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (s, 1H), 7.61 (d, J = 9.1 Hz, 1H), 7.39 (dd, J = 9.5, 2.3 Hz, 1H), 4.59 (s, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.59, 159.58, 149.32, 146.49, 145.25, 143.99, 140.15, 138.88, 136.20, 128.71, 125.80, 122.40, 117,02, 109.72, 107.63, 24.10, 15.50; HRMS Calcd for C₁₇H₈ClF₅N₄OS: *m/z* 446.0027. Found: 447.0103 (M + H)⁺, 449.0077 (MH + 2)⁺.

4-(((5-(6-Chloro-2-methylimidazo[1,2-a]pyridin-3-yl)-1,3,4-oxadiazol-2-yl)thio)methyl) benzonitrile, 9h:White solid, Yield 62%. m.p. 178-180°C. IR (Film): 3091, 2925, 2360, 2229, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.39 (s, 1H), 7.63-7.54 (m, 5H), 7.33 (dd, J = 9.5, 2.3 Hz, 1H), 4.52 (s, 2H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.46, 159.20, 149.08, 145.13, 141.22, 132.50, 129.84, 128.57, 125.66, 122.29, 118.34, 116.98, 111.97, 107.61, 36.04, 15.50; HRMS Calcd for C₁₈H₁₂ClN₅OS: *m/z* 381.0453. Found: 382.0526 (M + H)⁺, 384.0501 (MH + 2)⁺.

Methyl-4-(((5-(6-chloro-2-methylimidazo[1,2-*a*] pyridin-3-yl)-1,3,4-oxadiazol-2-yl)thio) methyl) benzoate, 9i: White solid, Yield 59%. m.p. 166168°C. IR (Film): 2922, 1724, 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.45 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.58 (t, *J* = 9.1 Hz, 3H), 7.37 (dd, *J* = 9.5, 2.3 Hz, 1H), 4.57 (s, 2H), 3.90 (s, 3H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.50, 161.84, 159.08, 149.00, 145.10, 140.71, 130.04, 129.87, 129.07, 128.50, 125.72, 122.24, 116.96, 107.72, 52.18, 36.39, 15.50; HRMS Calcd for C₁₉H₁₅ClN₄O₃S: *m/z* 414.0586. Found: 415.0659(M + H)⁺, 417.0636 (MH + 2)⁺.

2-((5-(6-Chloro-2-methylimidazo[1,2-a]pyridin-3-yl)-1,3,4-oxadiazol-2-yl)thio)-1-phenyl-ethanone, 9j: White solid, Yield 63%. m.p. 225-227°C. IR (Film): 3064, 3005, 2917, 1676, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.45 (s, 1H), 8.07 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.60 (d, J = 9.1 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.38 (dd, J = 9.5, 2.3 Hz, 1H), 5.00 (s, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.72, 162.24, 159.09, 149.11, 145.14, 134.81, 134.31, 129.00, 128.50, 125.73, 122.24, 117.01, 107.74, 41.52, 15.54; HRMS Calcd for C₁₈H₁₃ClN₄O₂S: *m/z* 384.0458. Found: 385.0536 (M + H)⁺, 387.0509 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(ethylthio)-1,3,4-oxadiazole, 9k**: White solid, Yield 39%. m.p. 151-153°C. IR (Film): 3068, 3008, 2926, 2859, 2361, 2336, 1895, 1744, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (s, 1H), 7.59 (d, *J* = 9.1 Hz, 1H), 7.36 (dd, *J* = 9.6, 1.4 Hz, 1H), 3.35 (q, *J* = 7.3 Hz, 2H), 2.74 (s, 3H), 1.56 (t, *J* = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.89, 158.74, 148.73, 145.02, 128.35, 125.71, 122.15, 116.91, 107.89, 27.21, 15.46, 14.71; HRMS Calcd for C₁₂H₁₁ClN₄OS: *m*/*z* 294.0313. Found: 295.0385 (M + H)⁺, 297.0357 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-a]pyridin-3yl)-5-(propyl thio)-1,3,4-oxadiazole, 9l: White solid, Yield 45%. m.p. 145-147°C. IR (Film): 3066, 3002, 2958, 2866, 1599 cm-1; 1H NMR (400 MHz, CDCl3): δ 9.48 (s, 1H), 7.60 (d, J = 9.6 Hz, 1H), 7.37 (d, J = 9.1, Hz, 1H), 3.31 (t, J = 6.8 Hz, 2H) 2.75 (s, 3H), 1.96-1.85 (m, 2H), 1.11 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl3): δ 163.15, 158.71, 148.70, 144.99, 128.36, 125.72, 122.16, 116.91, 108.15, 34.65, 22.75, 15.45, 13.13; HRMS Calcd for C₁₃H₁₃ClN₄OS: *m/z* 308.0474. Found: 309.0547 (M + H)⁺, 311.0519 (MH + 2)⁺.

2-(Butylthio)-5-(6-chloro-2-methylimidazo[1,2-*a*] pyridin-3-yl)-1,3,4-oxadiazole, 9m: White solid, Yield 47%. m.p. 136-138°C. IR (Film): 3070, 3008, 2957, 2927, 2863, 1939, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H), 7.59 (d, *J* = 9.1 Hz, 1H), 7.36 (dd, *J* = 9.4, 2.3 Hz, 1H), 3.33 (t, *J* = 7.3 Hz, 2H), 2.74 (s, 3H), 1.90-1.83 (m, 2H), 1.57-1.48 (m, 2H), 0.98 (t, *J* = 7.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.22, 158.76, 148.76, 145.06, 128.39, 125.76, 122.21, 116.95, 108.03, 32.54, 31.34, 21.76, 15.47, 13.47; HRMS Calcd for C₁₄H₁₅ClN₄OS: *m*/*z* 322.0639. Found: 323.0712 (M + H)⁺, 325.0684 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(isopentylthio)-1,3,4-oxadiazole, 9n**: White solid, Yield 49%. m.p. 102-104°C. IR (Film): 3069, 3006, 2954, 2869, 1600 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H), 7.60 (d, J = 9.6 Hz, 1H), 7.36 (dd, J = 9.1, 1.8 Hz, 1H), 3.33 (t, J = 6.8 Hz, 2H), 2.74 (s, 3H), 1.82-1.75 (m, 3H), 0.98 (d, J = 6.4Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 163.17, 158.74, 148.74, 145.04, 128.38, 125.75, 122.19, 116.94, 107.94, 38.10, 30.94, 27.45, 22.10, 15.47; HRMS Calcd for C₁₅H₁₇ClN₄OS: *m*/*z* 336.0795. Found: 337.0867 (M + H)⁺, 339.0842 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(pentylthio)-1,3,4-oxadiazole, 90**: White solid, Yield 48%. m.p. 112-114°C. IR (Film): 3086, 3030, 2970, 2924, 2852, 2362, 1944, 1791, 1716, 1631, 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.49 (s, 1H), 7.60 (d, J = 9.9 Hz, 1H), 7.36 (dd, J = 9.5, 2.3Hz, 1H), 3.32 (t, J = 7.6 Hz, 2H), 2.75 (s, 3H), 1.92-1.85 (m, 2H), 1.51-1.34 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.22, 158.75, 148.76, 145.05, 128.39, 125.77, 122.18, 116.96, 107.98, 32.78, 30.73, 29.03, 22.12, 15.52, 13.91; HRMS Calcd for C₁₅H₁₇ClN₄OS: *m/z* 336.0819. Found: 337.0891 (M + H)⁺, 339.0866 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(hexylthio)-1,3,4-oxadiazole, 9p**: Brown solid, Yield 53%. m.p. 83-85°C. IR (Film): 3070, 3008, 2954, 2926, 2854, 1716, 1631, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.49 (s, 1H), 7.60 (d, *J* = 9.1 Hz, 1H), 7.37 (d, *J* = 9.6 Hz, 1H), 3.32 (t, *J* = 7.3 Hz, 2H), 2.74 (s, 3H), 1.91-1.84 (m, 2H), 1.51-1.46 (m, 2H), 1.34-1.33 (m, 4H), 0.90 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.21, 158.74, 148.72, 145.03, 128.39, 125.76, 122.19, 116.94, 107.94, 32.82, 31.16, 29.28, 28.27, 22.46, 15.47, 13.95; HRMS Calcd for C₁₆H₁₉ClN₄OS: *m/z* 350.0934. Found: 351.1006 (M + H)⁺, 353.0981 (MH + 2)⁺. **2-(6-Chloro-2-methylimidazo[1,2-***a***]pyridin-3-yl)-5-(heptylthio)-1,3,4-oxadiazole, 9q:** Brown solid, Yield 40%. m.p. 68-70°C. IR (Film): 3089, 2924, 2855, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H), 7.59 (d, *J* = 10.0 Hz, 1H), 7.36 (dd, *J* = 9.6, 1.8 Hz, 1H), 3.32 (t, *J* = 7.3 Hz, 2H), 2.74 (s, 3H), 1.91-1.84 (m, 2H), 1.52-1.45 (m, 2H), 1.39-1.25 (m, 6H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.21, 158.71, 148.71, 145.02, 128.39, 125.74, 122.19, 116.92, 107.93, 32.81, 31.60, 29.08, 28.66, 28.56, 22.51, 15.45, 14.00; HRMS Calcd for C₁₇H₂₁ClN₄OS: *m/z* 364.1125. Found: 365.1193 (M + H)⁺.

2-(6-Chloro-2-methylimidazo[1,2-*a***]pyridin-3-yl)-5-(octylthio)-1,3,4-oxadiazole, 9r**: Yellow solid, Yield 48%. m.p. 74-76°C. IR (Film): 3031, 2925, 2853, 1745, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 7.59 (d, J = 9.6 Hz, 1H), 7.36 (dd, J = 9.6, 1.8 Hz, 1H), 3.32 (t, J = 7.3 Hz, 2H), 2.74 (s, 3H), 1.91-1.84 (m, 2H),1.52-1.45 (m, 2H), 1.37-1.28 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.21, 158.74, 148.74, 145.05, 128.37, 125.76, 122.19, 116.95, 107.96, 32.85, 31.71, 29.34, 29.08, 28.97, 28.62, 22.57, 15.45, 14.03; HRMS Calcd for C₁₈H₂₃ClN₄OS: *m*/*z* 378.1281. Found: 379.1349 (M + H)⁺, 381.1325 (MH + 2)⁺.

(E)-2-(6-Chloro-2-methylimidazo[1,2-*a*]pyridin-3-yl)-5-((3,7-dimethylocta-2,6-dien-1-yl)thio)-1,3,4oxadiazole, 9s: Semi solid, Yield 48%; IR (Film): 3088, 2964, 2922, 2854, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.64 (d, *J* = 9.1 Hz, 1H), 7.40 (dd, *J* = 9.6, 2.3 Hz, 1H), 5.51-5.44 (m, 1H), 5.06-5.03 (m, 1H), 4.00 (d, *J* = 7.6 Hz, 2H), 2.76 (s, 3H), 2.10-2.07 (m, 4H), 1.78 (d, *J* = 4.5 Hz, 3H), 1.67(s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.99, 158.81, 148.78, 145.06, 143.15, 131.96, 128.42, 125.78, 123.49, 122.20, 116.95, 110.02, 107.96, 39.49, 31.01, 26.24, 25.63, 17.68, 16.31, 15.51; HRMS Calcd for C₂₀H₂₃ClN₄OS: *m/z* 402.1277. Found: 403.1351 (M + H)⁺, 405.1325 (MH + 2)⁺.

2-(6-Chloro-2-methylimidazo[1,2-a]pyridin-3-yl)-5-(prop-2-yn-1-ylthio)-1,3,4-oxadiazole, 9t: White solid, Yield 64%. m.p. 154-156°C. IR (Film): 3165, 2108, 1631, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 7.61 (d, J = 9.1 Hz, 1H), 7.38 (dd, J = 9.5, 2.3 Hz, 1H), 4.08 (d, J = 2.3 Hz, 2H), 2.76 (s, 3H), 2.37 (t, J = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.06, 159.33, 149.17, 145.19, 128.58, 125.78, 122.30, 117.00, 107.74, 73.09, 21.28, 15.55; HRMS Calcd for $C_{13}H_9ClN_4OS$: *m/z* 304.0185. Found: 305.0257 (M + H)⁺, 307.0231 (MH + 2)⁺.

2-(Benzylthio)-5-(2,6-dimethylimidazo[1,2-*a***] pyridin-3-yl)-1,3, 4-oxadiazole, 10a**: Brown solid, Yield 50%. m.p. 143-145°C. IR (Film): 2922, 1610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.16 (s, 1H), 7.55 (d, *J* = 9.1 Hz, 1H), 7.47 (d, *J* = 6.8 Hz, 2H), 7.37-7.28 (m, 3H), 7.26-7.23 (m, 1H), 4.53 (s, 2H), 2.69 (s, 3H), 2.42 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.70, 159.46, 148.06, 145.72, 135.51, 130.10, 129.00, 128.74, 128.03, 125.62, 123.75, 115.87, 106.89, 36.89, 18.28, 15.47; HRMS Calcd for C₁₈H₁₆N₄OS: *m/z* 336.1047. Found: 337.1119 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-((4-nitrobenzyl)thio)-1,3,4-oxadiazole, 10b**: White solid, Yield 44%. m.p. 174-176°C. IR (Film): 3743, 2480, 1743, 1698, 1648, 1598 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.12 (s, 1H), 8.20 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 9.1 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.28-7.24 (m, 1H), 4.59 (s, 2H), 2.69 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.74, 159.83, 148.36, 147.49, 145.89, 143.39, 130.28 130.02, 125.61, 123.90, 116.00, 106.71, 35.67, 18.31, 15.56; HRMS Calcd for C₁₈H₁₅N₅O₃S: *m/z* 381.0906. Found: 382.0978 (M + H)⁺.

2-((4-Bromobenzyl)thio)-5-(2,6-dimethylimidazo [**1,2-***a***]pyri dine-3-yl)-1,3,4-oxadiazole, 10c**: White solid, Yield 41%. m.p. 144-146°C. IR (Film): 3851, 3742, 2361, 2321, 1744, 1699, 1648, 1605 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.14 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.27-7.23 (m, 1H), 4.47 (s, 2H), 2.68 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.36, 159.67, 148.26, 145.86, 134.80, 131.90, 130.75, 130.21, 125.68, 123.85, 122.13, 115.99, 106.89, 36.18, 18.33, 15.55; HRMS Calcd for C₁₈H₁₅BrN₄OS: m/z 414.0155. Found: 415.0226 (M + H)⁺, 417.0208 (MH + 2)⁺.

2-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-

((4-fluorobenzyl)thio)-1,3,4-oxadiazole, 10d: White solid, Yield 48%. m.p. 150-152°C. IR (Film): 3852, 3742, 2361, 1699, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.15 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.48-7.44 (m, 2H), 7.26-7.23 (m, 1H), 7.05-7.01 (m, 2H), 4.50 (s, 2H), 2.69 (s, 3H), 2.42 (s, 3H);

HRMS Calcd for $C_{18}H_{15}FN_4OS$: *m/z* 354.0954. Found: 355.1027 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-((2-nitrobenzyl)thio)-1,3,4-oxadiazole, 10e**: Brown solid, Yield 51%. m.p. 149-151°C. IR (Film): 3860, 3743, 3648, 3619, 2361, 2322, 1741, 1693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.13 (s, 1H), 8.17 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.56-7.49 (m, 2H), 7.27-7.24 (m, 1H), 4.88 (s, 2H), 2.67 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.07, 159.76, 148.35, 147.48, 145.84, 133.99, 133.02, 132.62, 130.21, 129.39, 125.72, 125.58, 123.86, 116.01, 106.82, 34.55, 18.32, 15.54; HRMS Calcd for C₁₈H₁₅N₅O₃S: *m/z* 381.0898. Found: 382.0969 (M + H)⁺.

2-((2,5-Difluorobenzyl)thio)-5-(2,6-dimethylimidazo [**1,2-***a***]pyridin-3-yl)-1,3,4-oxadiazole, 10f**: White solid, Yield 50%. m.p. 149-150°C. IR (Film): 3064, 3035, 2926, 1911, 1641, 1605 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.16 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.35-7.31 (m, 1H), 7.27-7.24 (m, 1H), 7.08-6.95 (m, 2H), 4.52 (s, 2H), 2.69 (s, 3H), 2.43 (s, 3H); HRMS Calcd for C₁₈H₁₄F₂N₄OS: *m/z* 372.0856. Found: 373.0932 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a*]pyridin-3-yl)-5-((naphthalen-1-ylmethyl)thio)-1,3,4-oxadiazole,

10g: White solid, Yield51%. m.p. 156-158°C. IR (Film): 3743, 3619, 3062, 3003, 2465, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 6.8 Hz, 1H), 7.62-7.51 (m, 3H), 7.42 (t, *J* = 7.6 Hz, 1H) 7.25 (d, *J* = 8.4 Hz, 1H), 5.04 (s, 2H), 2.65 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.02, 159.55, 148.12, 145.77, 133.93, 131.18, 130.64, 130.23, 129.34, 129.04, 128.32, 126.76, 126.12, 125.71, 125.35, 123.88, 123.23, 115.94, 106.88, 35.07, 18.35, 15.46; HRMS Calcd for C₂₂H₁₈N₄OS: *m/z* 386.1202. Found: 387.1274 (M + H)⁺.

4-(((5-(2,6-Dimethylimidazo[1,2-*a*]pyridin-3-yl)-1,3,4-oxadiazo 1-2-yl)thio)methyl)benzonitrile, 10h: White solid, Yield 58%. m.p. 164-166°C. IR (Film): 3859, 3741, 3698, 3676, 3647, 3617, 3082, 2992, 2353, 2318, 2219, 1706, 1646, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.13 (s, 1H), 7.64-7.62 (m, 4H), 7.56 (d, *J* = 9.1 Hz, 1H), 7.27-7.25 (m, 1H), 4.54 (s, 2H), 2.69 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.87, 159.65, 148.33, 145.90, 141.37, 132.50, 130.32, 129.85, 125.65, 123.95, 118.54, 116.02, 111.93, 36.05, 18.33, 15.56; HRMS Calcd for C₁₉H₁₅N₅OS: *m*/*z* 361.1009. Found: 362.1081 (M + H)⁺.

Methyl-4-(((5-(2,6-dimethylimidazo[1,2-*a*] pyridin-3-yl)-1,3,4-oxadiazol-2-yl)thio)methyl)

benzoate, 10i: White solid, Yield 51%. m.p. 160-162°C. IR (Film): 3035, 2922, 2855, 1722, 1605 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.14 (s, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.58-7.54 (m, 3H), 7.27-7.23 (m, 1H), 4.56 (s, 2H), 3.90 (s, 3H) 2.68 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.51, 161.23, 159.65, 148.21, 145.81, 140.84, 130.19, 129.99, 129.05, 125.63, 115.93, 106.82, 52.15, 36.36, 18.29, 15.51; HRMS Calcd for C₂₀H₁₈N₄O₃S: *m/z* 394.1083. Found: 395.1155 (M +H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(ethylthio)-1,3,4-oxadiazole, 10j**: White solid, Yield 53%. m.p. 100-102°C. IR (Film): 3329, 3087, 2968, 2926, 2863, 2361, 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.24 (d, J = 7.3 Hz, 1H), 3.37-3.30 (m, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.55 (t, J = 7.3Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.29, 159.35, 147.97, 145.77, 130.06, 125.67, 123.73, 115.93, 107.02, 27.17, 18.32, 15.52, 14.76; HRMS Calcd for C₁₃H₁₄N₄OS: *m*/z 274.0874. Found: 275.0946 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(propylthio)-1,3,4-oxadiazole, 10k**: White solid, Yield 39%. m.p. 109-111°C. IR (Film): 3327, 3083, 3014, 2960, 2924, 2866, 2359, 1602 cm-¹; ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 9.1 Hz, 1H), 3.29 (t, J = 7.8 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.96-1.87 (m, 2H), 1.10 (t, J = 8.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.53, 159.32, 148.06, 145.75, 130.05, 125.67, 123.72, 115.92, 106.82, 34.62, 22.80, 18.31, 15.50, 13.14; HRMS Calcd for C₁₄H₁₆N₄OS: m/z 288.1032. Found: 289.1104(M + H)⁺.

2-(Butylthio)-5-(2,6-dimethylimidazo[1,2-*a*]

pyridin-3-yl)-1,3,4-oxadiazole, 10I: White solid, Yield 43%. m.p. 98-100°C. IR (Film): 3326, 2957, 2926, 2862, 1606 cm-¹; ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.24 (dd, J = 9.1, 1.3 Hz, 1H), 3.32 (t, J = 7.3 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H),1.90-1.82 (m, 2H), 1.57-1.48 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.60, 159.34, 147.95, 145.78, 130.08, 125.69, 123.76, 115.93, 107.06, 32.48, 31.37, 21.75, 18.31, 15.49, 13.48; HRMS Calcd for $C_{15}H_{18}N_4OS$: *m/z* 302.1186. Found: 303.1258 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(isopentylthio)-1,3,4-oxadiazole, 10m**: White solid, Yield 52%. m.p. 112-114°C. IR (Film): 2933, 2860, 1598 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 7.55 (d, *J* = 9.1 Hz, 1H), 7.24 (d, *J* = 9.1 Hz, 1H), 3.32 (t, *J* = 7.3 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.78-1.74 (m, 3H), 0.98 (d, *J* = 6.4Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.56, 159.35, 147.98, 145.80, 130.06, 125.70, 123.74, 115.95, 107.06, 38.16, 30.91, 27.44, 22.10, 18.31, 15.51; HRMS Calcd for C₁₆H₂₀N₄OS: *m*/*z* 316.1338. Found: 317.1410 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(pentylthio)-1,3,4-oxadiazole, 10n**: White solid, Yield 43%. m.p. 59-61°C. IR (Film): 3082, 3015, 2953, 2922, 2854, 1680, 1642, 1600 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 7.56 (d, *J* = 9.1 Hz, 1H), 7.24 (dd, *J* = 9.1, 1.5 Hz, 1H), 3.31 (t, *J* = 7.2 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.92-1.84 (m, 2H), 1.49 -1.37 (m, 4H), 0.93 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.60, 159.34, 147.95, 145.78, 130.07, 125.70, 123.75, 115.94, 107.06, 32.75, 30.72, 29.07, 22.11, 18.33, 15.52, 13.89; HRMS Calcd for C₁₆H₂₀N₄OS: *m/z* 316.1357. Found: 317.1450 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a*]pyridin-3-yl)-5-

(hexylthio)-1,3,4-oxadiazole, 100: White solid, Yield 43%. m.p. 64-66°C. IR (Film): 3328, 2921, 1605 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.24 (d, *J* = 9.1 Hz, 1H), 3.31(t, *J* = 7.3 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.91-1.83 (m, 2H), 1.52-1.45 (m, 2H), 1.36-1.30 (m, 4H), 0.91-0.88 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.62, 159.34, 147.95, 145.79, 130.09, 125.71, 123.77, 115.94, 107.08, 32.80, 31.17, 29.34, 28.27, 22.46, 18.32, 15.50, 13.95; HRMS Calcd for C₁₇H₂₂N₄OS: *m/z* 330.1503. Found: 331.1575 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(heptylthio)-1,3,4-oxadiazole, 10p**: White solid, Yield 43%. m.p. 63-65°C. IR (Film): 3085, 2925, 2856, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 7.56 (d, J = 9.1 Hz, 1H), 7.24 (d, J = 9.1 Hz, 1H), 3.31 (t, J = 7.5 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.91-1.83 (m, 2H), 1.50-1.44 (m, 2H), 1.35-1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.62, 159.33, 147.94, 145.78, 130.09, 125.70, 123.76, 115.94, 107.07, 32.80, 31.61, 29.38, 28.68, 28.57, 22.52, 18.32, 15.50, 14.00; HRMS Calcd for C₁₈H₂₄N₄OS: m/z 344.1657. Found: 345.1729 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(octylthio)-1,3,4-oxadiazole, 10q**: White solid, Yield 61%. m.p. 74-77°C. IR (Film): 2918, 2851, 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 7.55 (d, *J* = 8.7 Hz, 1H), 7.24 (d, *J* = 9.1 Hz, 1H), 3.30 (t, *J* = 7.3 Hz, 2H), 2.73 (s, 3H), 2.42 (s, 3H), 1.91-1.83 (m, 4H), 1.52-1.44 (m, 2H), 1.36-1.28 (s, 6H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.61, 159.33, 147.95, 145.79, 130.07, 125.70, 123.75, 115.94, 107.07, 32.80, 31.71, 29.38, 29.08, 28.97, 28.61, 22.57, 18.31, 15.50, 14.03; HRMS Calcd for C₁₉H₂₆N₄OS: *m/z* 358.1827. Found: 359.1911(M + H)⁺.

(E)-2-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-((3,7-dimethylocta-2,6-dien-1-yl)thio)-1,3,4-

oxadiazole, 10r: Semi solid, Yield 44%. m.p. 126-28°C. IR (Film): 3348, 3084, 2965, 2922, 2855, 1654, 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.07 (s, 1H), 7.45 (d, J = 9.1 Hz, 1H), 7.14 (dd, J = 9.1, 1.5 Hz, 1H), 5.38 (t, J = 7.6 Hz, 1H), 4.96 (brs, 1H), 3.90 (d, J = 7.6 Hz, 2H), 2.64 (s, 3H), 2.33 (s, 3H), 2.01 - 1.98 (m, 4H), 1.68 (s, 3H), 1.58 (s, 3H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.23, 159.28, 147.88, 145.66, 142.82, 131.81, 129.97, 125.59, 123.64, 123.41, 117.01, 115.82, 106.95, 39.38, 30.88, 26.15, 25.54, 18.24, 17.59, 16.19, 15.43; HRMS Calcd for C₂₁H₂₆N₄OS: *m/z* 382.1834. Found: 383.1906 (M + H)⁺.

2-(2,6-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-5-(prop-2-yn-1-ylthio)-1,3,4-oxadiazole, 10s**: White solid, Yield 56%. m.p. 163-165°C. IR (Film): 3222, 3146, 3036, 2924, 2855, 2355, 2319, 2105, 1741, 1642, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 7.56 (d, J = 9.1Hz, 1H), 7.26 (d, J = 7.6 Hz, 1H), 4.06 (d, J = 2.3 Hz, 2H), 2.74 (s, 3H), 2.42 (s, 3H), 2.36 (t, J = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.47, 159.92, 148.40, 145.91, 130.28, 125.74, 123.91, 115.99, 106.73, 21.25, 18.34, 15.57; HRMS Calcd for C₁₄H₁₂N₄OS: *m/z* 284.0735. Found: 285.0807(M+H)⁺.

Conclusions

In summary, we have reported the synthesis and antimycobacterial activity evaluation of a series of 1,3,4-oxadiazole-imidazo[1,2-*a*]pyridine hybrids. The *in vitro* evaluation of ten out of fifty-nine molecular hybrids against Mycobacterium tuberculosis H37Rv strain, have shown activity in the range of 3.125-12.5 μ M. Compound **8p** was found to be most active with MIC₉₉ value of 3.125-6.250 μ M. Further, these ten compounds were also tested for their *in vitro* toxicity against THP-1 cell line and were found to be non-toxic with TC₅₀ value in the range of (10 - >50 μ M) concentration.

Acknowledgements

DSR thanks DU-DST Purse grant for financial support. SSM is thankful to CSIR India for the award of senior and junior research fellowship respectively. The authors express their thanks to USIC-CIF, University of Delhi for analytical data.

References

- 1 WHO, Global Tuberculosis Report, (2017).
- 2 Kurz S G, Furin J J & Bark C M, Infect Dis Clin North Am, 30 (2016) 509.
- 3 Pai M, Behr M A, Dowdy D, Dheda K, Divangahi M, Boehme C C, Ginsberg A, Swaminathan S, Spigelman M, Getahun H, Menzies D & Raviglione M, *Nat Rev Dis Primers*, 2 (2016) 16076.
- 4 Beena & Rawat D S, *Med Res Rev*, 33 (2013) 693.
- 5 Calligaro G L, Moodley L, Symons G & Dheda K, *J Thorac Dis*, 6 (2014) 186.
- 6 Kumar D, Negi B & Rawat D S, *Future Med Chem*, 7 (2015) 1981.
- 7 Krenitsky T A, Rideout J L, Chao E Y, Koszalka G W, Gurney F, Crouch R C, Cohn N K, Wolber G & Vinegar R, J Med Chem, 29 (1986) 138.
- 8 Ramasamy K, Imamura N, Hanna N B, Finch R A, Avery T L, Robins R K & Revankar G R, *J Med Chem*, 33 (1990) 1220.
- 9 Jr C Temple, Rose J D, Comber R N & Rener G A, J Med Chem, 30 (1987) 1746.
- 10 Lv K, Li L, Wang B, Liu M, Wang B, Shen W, Guo H & Lu Y, Eur J Med Chem, 137 (2017) 117.
- 11 Odell L R, Nilsson M T, Gising J, Lagerlund O, Muthas D, Nordqvist A, Karlen A & Larhed M, *Bioorg Med Chem Lett*, 19 (2009) 4790.
- 12 Moraski G C, Markley L D, Hipskind P A, Boshoff H, Cho S, Franzblau S G & Miller M J, ACS Med Chem Lett, 2 (2011) 466.
- 13 Dahan-Farkas N, Langley C, Rousseau A L, Yadav D B, Davids H & de Koning C B, *Eur J Med Chem*, 46 (2011) 4573.
- 14 Urbina M A M, Zentella A, Reyes M A V, Guzman A, Vargas O, Apan M T R, Gallegos J L V, Díaz E, *Eur J Med Chem*,45 (2010) 1211.
- 15 Veron J B, Allouchi H, Gueiffier C E, Snoeck R, Andrei G, De Clercq E & Gueiffier A, *Bioorg Med Chem*, 16 (2008) 9536.

- 16 Al-Tel T H, Al-Qawasmeh R A & Zaarour R, *Eur J Med Chem*, 46 (2011) 1874.
- 17 Bode M L, Gravestock D, Moleele S S, van der Westhuyzen C W, Pelly S C, Steenkamp P A, Hoppe H C, Khan T & Nkabinde T A, *Bioorg Med Chem*, 19 (2011) 4227.
- 18 Moraski G C, Markley L D, Cramer J, Hipskind P A, Boshoff H, Bailey M A, Alling T, Ollinger J, Parish T, Miller M J, ACS Med Chem Lett, 4 (2013) 675.
- 19 Ballell L, Bates R H, Young R J, Gomez D A, Ruiz E A, Barroso V, Blanco D, Crespo B, Escribano J, Gonzalez R, Lozano S, Huss S, Villarejo A S, Plaza J J M, Mendoza A, Lopez M J R, Blanco M R, Lavandera J L, Herran E P, Benito F J G, Bustos J F G, Barros D, Castro J P & Cammack J F G, *Chem Med Chem*, 8 (2013) 313.
- 20 Moraski G C, Miller P A, Bailey M A, Ollinger J, Parish T, Boshoff H I, Cho S, Anderson J R, Mulugeta S, Franzblau S G & Miller M J, ACS Infect Dis, 1 (2015) 85.
- 21 Pulipati L, Sridevi J P, Yogeeswari P, Sriram D, Kantevari S, Bioorg Med Chem Lett, 26 (2016) 3135.
- 22 Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, Jiricek J, Jung J, Jeon H K, Cechetto J, Christophe T, Lee H, Kempf M, Jackson M, Lenaerts A J, Pham H, Jones V, Seo M J, Kim Y M, Seo M, Seo J J, Park D, Ko Y, Choi I, Kim R, Kim S Y, Lim S B, Yim S Ae, Nam J, Kang H, Kwon H, Oh C T, Cho Y, Jang Y, Kim J, Chua A, Tan B H, Nanjundappa M B, Rao S P S, Barnes W S, Wintjens R, Walker J R, Alonso S, Lee S, Kim J, Oh S, Oh T, Nehrabass U, Han S J, No Z, Lee J, Brodin P, Cho S N, Nam K& Kim J, *Nat Med*, 19 (2013) 1157.
- 23 Bostrom J, Hogner A, Llinas A, Wellner E & Plowright A T, J Med Chem, 55 (2012) 1817.
- 24 Kumar B, Kumar A, Beheraand A K & Raj V, *J Cell Sci Ther*, 7 (2016) 233.
- 25 Cheptea C, Sunel V, Holban M, Desbrieres J, Popa M & Lionte C, *Cellulose Chem Technol*, 46 (2012) 19.
- 26 Akhter M, Husain A, Azad B & Ajmal M, Eur J Med Chem, 44 (2009) 2372.
- 27 Tantray M A, Khan I, Hamid H, Alam M S, Dhulap A & Kalam A, *Bioorg Chem*, 77 (2018) 393.
- 28 El-Emam A A, Al-Deeb O A, Al-Omar M & Lehmann J, Bioorg Med Chem, 12 (2004) 5107.
- 29 Ali M A & Shaharyar M, *Bioorg Med Chem Lett*, 17 (2007) 3314.

- 30 Padmavathi V, Reddy S N, Reddy G D & Padmaja A, Eur J Med Chem, 45 (2010) 4246.
- 31 Singh P, Sharma P K, Sharma J K, Upadhyay A & Kumar N, *Org Med Chem Lett*, 2 (2012) 2.
- 32 Almasirad A, Tabatabi S A, Faizi M, Kebriaeezade A, Mehrabi N, Dalvandi A & Shafiee A, *Bioorg Med Chem*, 14 (2004) 6057.
- 33 Ali K A, Ragab E A, Farghaly T A, Abdalla M M, *Acta Pol Pharm*, 68 (2011) 237.
- 34 Bajaj S, Asati V, Singh J, Roy P P, Eur J Med Chem, 97 (2015) 124
- 35 Meunier B, Acc Chem Res, 41 (2008) 69.
- 36 Janin Y L, Bioorg Med Chem, 15 (2007) 2479.
- 37 Koul A, Arnoult E, Lounis N, Guillemont J , Andries K, *Nature*, 469 (2011) 483.
- 38 Abrahams K A, Cox J A G, Spivey V L, Loman N J, Pallen M J, Constantinidou C, Fernandez R, Alemparte C, Remuinan M J, Barros D, Ballell L & Besra G S, *PLoS One*, 7 (2012) e52951.
- 39 Moraski G C, Markley L D, Chang M, Cho S, Franzblau S G, Hwang C H, Boshoff H, Miller M J, *Bioorg Med Chem*, 20 (2012) 2214.
- 40 Manohar S, Rajesh U C, Khan S I, Tekwani B L & Rawat D S, *ACS Med Chem Lett*, 3 (2012) 555.
- 41 Maurya S S, Khan S I, Bahuguna A, Kumar D & Rawat D S, Eur J Med Chem, 129 (2017) 175.
- 42 Maulik P R, Avasthi K, Biswas G, Biswas S, Rawat D S, Sarkhel S, Chandra T & Bhakuni D S, Acta Crystal Section C, 54 (1998) 275.
- 43 Arya K, Rawat D S, Dandia A, Sasai H, *J Fluorine Chem*, 137 (2012) 117.
- 44 Kumar D, Khare G, Beena, Kidwai S, Tyagi A K, Singh R, Rawat D S, *Med Chem Commun*, 6 (2015) 131.
- 45 Samala G, Nallangi R, Devi P B, Saxena S, Yadav R, Sridevi J P, Yogeeswari P, Sriram D, *Bioorg Med Chem*, 22 (2014) 4223.
- 46 Karabanovich G, Zemanova J, Smutny T, Szekely R, Sarkan M, Centarova I, Vocat A, Pavkova I, Conka P, Nemecek J, Stolarkova J, Vejsova M, Vavrova K, Klimesova V, Hrabalek A, Pavek P, Cole S T, Mikusova K, Roh J. *J Med Chem*, 59 (2016) 2362.
- 47 Tanemura K, Suzuki T, Nishida Y, Satsumabayashi K & Horaguchi T, *Chem Commun*, 0 (2004) 470.