2 research outputs found

    Case study of a performance-active changing trans* male singing voice

    Get PDF
    A professional classical singer of more than 25 years (AZ) in his early 50s requested this voice researcher’s consultation and assistance in early 2014. He was about to start living full time as a trans* man. Despite his intention to be included in the low start/gradual increase testosterone option of the Trans* Male (previously, “FTM”) Singing Voice Program, the request contained a rather unconventional aspect: AZ would continue to sing while his voice was changing. The above request was integral with his singing history. After the introduction of safeguards and his informed consent, AZ was accepted onto the Program. Due to the highly individual circumstances, his participation was recorded as a case study. The study has aimed to replicate the particulars of the slow hormonal changes and continuing singing ability found in certain cisgender male adolescent voices. Despite dealing with an adult trans* male individual, the progress has been comparable. This has been achieved by carefully monitoring AZ’s low start/gradual increase testosterone administration in communication with the medical practitioner. The participant’s vocal health remained safeguarded and promoted by carefully individualized vocal tuition. This article will discuss the collective results of the case study, including the recordings and the data analysis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore