68 research outputs found
Anti-IgE Response in Human Airways: Relative Contribution of Inflammatory Mediators
Heman airway preparations at resting tone were relaxed with either
the leukotriene synthesis inhibitor BAY x1005 (3 μM),
chlorpheniramine (1 μM) or the thromboxane receptor antagonist
BAY u3405 (0.1 μM). The response to anti-IgE (1:1000) was 58
± 8% of acetylcholine pre-contraction (2.19 ±
0.28 g). Indomethacin (3 μM) enhanced the anti-IgE-induced
contraction by 28%. The anti-IgE maximal response was not
modified by either chlorpheniramine, BAY x1005 or BAY u3405. When
the tissues were treated with either BAY xl005/indomethacin or
BAY x1005/chlorpheniramine, the anti-IgE-induced contraction was
reduced. In addition, in presence of BAY
xl005/indomethacin/chlorpheniramine the response was
completely blocked. These results suggest that mediatots released
during anti-IgE challenge cause airway contraction which may mask
the evaluation of the leukotriene component
Glycoconjugate secretion in human airways in vitro: effects of epithelium removal.
The aim of this study was to examine glycoconjugate secretion in human airways with and without an epithelium. Glycoconjugate release in supernatants derived from human airways in vitro was determined using an ELISA assay with an anti-human mucin monoclonal antibody (MAb 3D3). This monoclonal antibody reacted strongly with Le(b) antigen but also recognized in vitro Le(a) and Le(y) determinants. In 11 of the 34 different lung samples (32%) studied the glycoconjugate levels were below the threshhold of detection for this assay. The mean basal secretion of glycoconjugates in human airways in vitro was 100+/-28 microg/g tissue (Period I; n = 23 different lung samples). The amount of glycoconjugate measured in the medium derived from human isolated bronchial ring preparations did not change under control conditions during the course of the experimental procedure (Period I; 128+/-46 microg/g tissue and Period II; 159 +/-48 microg/g tissue; n = 13 paired lung samples). In the supernatants of airway preparations with an intact epithelium the amount of glycoconjugates detected was 90+/-38 microg/g tissue (Period I; n = 12 different lung samples) and removal of the epithelium did not alter this basal glycoconjugate release (94+/-60 microg/g tissue: Period I, n = 8 different lung samples). The absence of the epithelial layer was confirmed by histological evaluation. Methacholine (100 microM) induced a 10- and four-fold increase in glycoconjugate release from airways with and without an epithelium, respectively. In contrast, in preparations with an epithelium, LTD4 (10 microM) and anti-IgE (dilution: 1/1000) did not cause an increase of glycoconjugate release. The methacholine difference between airways with and without an epithelium was not significantly different (P > 0.10). However, a treatment with atropine (100 microM) prevented the increase of glycoconjugate release in preparations with an epithelium. These data derived from a limited number of experiments suggest that the epithelium may not regulate the basal or stimulated release of glycoconjugates from isolated human airways
The Actin Associated Protein Palladin Is Important for the Early Smooth Muscle Cell Differentiation
Palladin, an actin associated protein, plays a significant role in regulating cell adhesion and cell motility. Palladin is important for development, as knockdown in mice is embryonic lethal, yet its role in the development of the vasculature is unknown. We have shown that palladin is essential for the expression of smooth muscle cells (SMC) marker genes and force development in response to agonist stimulation in palladin deficient SMCs. The goal of the study was to determine the molecular mechanisms underlying palladin's ability to regulate the expression of SMC marker genes. Results showed that palladin expression was rapidly induced in an A404 cell line upon retinoic acid (RA) induced differentiation. Suppression of palladin expression with siRNAs inhibited the expression of RA induced SMC differentiation genes, SM α-actin (SMA) and SM22, whereas over-expression of palladin induced SMC gene expression. Chromatin immunoprecipitation assays provided evidence that palladin bound to SMC genes, whereas co-immunoprecipitation assays also showed binding of palladin to myocardin related transcription factors (MRTFs). Endogenous palladin was imaged in the nucleus, increased with leptomycin treatment and the carboxyl-termini of palladin co-localized with MRTFs in the nucleus. Results support a model wherein palladin contributes to SMC differentiation through regulation of CArG-SRF-MRTF dependent transcription of SMC marker genes and as previously published, also through actin dynamics. Finally, in E11.5 palladin null mouse embryos, the expression of SMA and SM22 mRNA and protein is decreased in the vessel wall. Taken together, our findings suggest that palladin plays a key role in the differentiation of SMCs in the developing vasculature
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
- …