3,971 research outputs found

    Metagenomic deep sequencing of aqueous fluid detects intraocular lymphomas.

    Get PDF
    IntroductionCurrently, the detection of pathogens or mutations associated with intraocular lymphomas heavily relies on prespecified, directed PCRs. With metagenomic deep sequencing (MDS), an unbiased high-throughput sequencing approach, all pathogens as well as all mutations present in the host's genome can be detected in the same small amount of ocular fluid.MethodsIn this cross-sectional case series, aqueous fluid samples from two patients were submitted to MDS to identify pathogens as well as common and rare cancer mutations.ResultsMDS of aqueous fluid from the first patient with vitreal lymphoma revealed the presence of both Epstein-Barr virus (HHV-4/EBV) and human herpes virus 8 (HHV-8) RNA. Aqueous fluid from the second patient with intraocular B-cell lymphoma demonstrated a less common mutation in the MYD88 gene associated with B-cell lymphoma.ConclusionMDS detects pathogens that, in some instances, may drive the development of intraocular lymphomas. Moreover, MDS is able to identify both common and rare mutations associated with lymphomas

    AINFO - versão 5.0: manual on-line.

    Get PDF
    O AINFO é um sistema para automação de bibliotecas e recuperação de informação, desenvolvimento em padrão Windows, com arquitetura cliente/servidor baseada no sistema gerenciador de banco de dados relacional Firebird. Pemite o gerenciamento de informação técnico-científica, integrando bases de dados documentais, cadastrais e processos bibliográficos através do armazenamento, atualização, indexação e recuperação de informação de forma simples e rápida, utilizando não apenas recursos de um istema gerenciador de banco de dados, como controle de concorrência e manutenção de integridade das bases de dados, mas também oferecendo facilidades de recuperação de informação textual não disponíveis nesses sistemas.bitstream/CNPTIA/10207/1/doc40.pdfAcesso em: 29 maio 2008

    Rodent Aβ Modulates the Solubility and Distribution of Amyloid Deposits in Transgenic Mice

    Get PDF
    The amino acid sequence of amyloid precursor protein (APP) is highly conserved, and age-related Abeta aggregates have been described in a variety of vertebrate animals, with the notable exception of mice and rats. Three amino acid substitutions distinguish mouse and human Abeta that might contribute to their differing properties in vivo. To examine the amyloidogenic potential of mouse Abeta, we studied several lines of transgenic mice overexpressing wild-type mouse amyloid precursor protein (moAPP) either alone or in conjunction with mutant PS1 (PS1dE9). Neither overexpression of moAPP alone nor co-expression with PS1dE9 caused mice to develop Alzheimer-type amyloid pathology by 24 months of age. We further tested whether mouse Abeta could accelerate the deposition of human Abeta by crossing the moAPP transgenic mice to a bigenic line expressing human APPswe with PS1dE9. The triple transgenic animals (moAPP x APPswe/PS1dE9) produced 20% more Abeta but formed amyloid deposits no faster and to no greater extent than APPswe/PS1dE9 siblings. Instead, the additional mouse Abeta increased the detergent solubility of accumulated amyloid and exacerbated amyloid deposition in the vasculature. These findings suggest that, although mouse Abeta does not influence the rate of amyloid formation, the incorporation of Abeta peptides with differing sequences alters the solubility and localization of the resulting aggregates

    A Similarity Measure for GPU Kernel Subgraph Matching

    Full text link
    Accelerator architectures specialize in executing SIMD (single instruction, multiple data) in lockstep. Because the majority of CUDA applications are parallelized loops, control flow information can provide an in-depth characterization of a kernel. CUDAflow is a tool that statically separates CUDA binaries into basic block regions and dynamically measures instruction and basic block frequencies. CUDAflow captures this information in a control flow graph (CFG) and performs subgraph matching across various kernel's CFGs to gain insights to an application's resource requirements, based on the shape and traversal of the graph, instruction operations executed and registers allocated, among other information. The utility of CUDAflow is demonstrated with SHOC and Rodinia application case studies on a variety of GPU architectures, revealing novel thread divergence characteristics that facilitates end users, autotuners and compilers in generating high performing code

    Testing the Special Relativity Theory with Neutrino interactions

    Full text link
    A recent measurement of neutrino velocity by the OPERA experiment and prediction of energy loss of superluminal neutrino via the pair creation process ννe+e\nu\to \nu e^+e^- stimulated a search of isolated e+ee^+e^- pairs in detectors with good tracking capability traversed by a large flux of high energy neutrino like NOMAD. NOMAD has already searched for similar topologies. These results can be reinterpreted to provide stringent limits on special relativity violating parameters separately for each ν\nu species.Comment: 3 pages, 3 figures, 1 table Accepted by EPL (Europhysics Letters

    The light-cone gauge and the calculation of the two-loop splitting functions

    Get PDF
    We present calculations of next-to-leading order QCD splitting functions, employing the light-cone gauge method of Curci, Furmanski, and Petronzio (CFP). In contrast to the `principal-value' prescription used in the original CFP paper for dealing with the poles of the light-cone gauge gluon propagator, we adopt the Mandelstam-Leibbrandt prescription which is known to have a solid field-theoretical foundation. We find that indeed the calculation using this prescription is conceptionally clear and avoids the somewhat dubious manipulations of the spurious poles required when the principal-value method is applied. We reproduce the well-known results for the flavour non-singlet splitting function and the N_C^2 part of the gluon-to-gluon singlet splitting function, which are the most complicated ones, and which provide an exhaustive test of the ML prescription. We also discuss in some detail the x=1 endpoint contributions to the splitting functions.Comment: 41 Pages, LaTeX, 8 figures and tables as eps file

    Successful Modified Therapy in a Patient With Probable Infection-Associated Hemophagocytic Lymphohistiocytosis

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a rare, hyperinflammatory syndrome characterized by clinical signs and symptoms of extreme inflammation. In adults, HLH is typically a complication of infections, autoimmune diseases, and malignancies. While the disease is often fatal, classic management of HLH revolves around early diagnosis and initiation of protocolized therapy. We present a case of a previously healthy 56-year-old female who developed distributive shock requiring intubation, vasopressors, and continuous venovenous hemofiltration. In the setting of multiple infectious syndromes, severe cytopenias, and rising direct hyperbilirubinemia, her diagnosis of HLH was confirmed. Therapy was initiated with dexamethasone and two doses of reduced-intensity etoposide based on the patient's clinical course. Over the next few weeks, she continued to improve on dexamethasone monotherapy and has maintained remission up to the present with complete resolution of her cytopenias and return of baseline renal function. Our case highlights the variability in the management of probable infection-associated HLH (IHLH) with a good patient outcome. We demonstrate the potential to treat IHLH with partial protocols and minimal chemotherapeutics

    Exact Histogram Specification Optimized for Structural Similarity

    Full text link
    An exact histogram specification (EHS) method modifies its input image to have a specified histogram. Applications of EHS include image (contrast) enhancement (e.g., by histogram equalization) and histogram watermarking. Performing EHS on an image, however, reduces its visual quality. Starting from the output of a generic EHS method, we maximize the structural similarity index (SSIM) between the original image (before EHS) and the result of EHS iteratively. Essential in this process is the computationally simple and accurate formula we derive for SSIM gradient. As it is based on gradient ascent, the proposed EHS always converges. Experimental results confirm that while obtaining the histogram exactly as specified, the proposed method invariably outperforms the existing methods in terms of visual quality of the result. The computational complexity of the proposed method is shown to be of the same order as that of the existing methods. Index terms: histogram modification, histogram equalization, optimization for perceptual visual quality, structural similarity gradient ascent, histogram watermarking, contrast enhancement
    corecore