30,421 research outputs found

    Low-Energy Lorentz Invariance in Lifshitz Nonlinear Sigma Models

    Get PDF
    This work is dedicated to the study of both large-NN and perturbative quantum behaviors of Lifshitz nonlinear sigma models with dynamical critical exponent z=2z=2 in 2+1 dimensions. We discuss renormalization and renormalization group aspects with emphasis on the possibility of emergence of Lorentz invariance at low energies. Contrarily to the perturbative expansion, where in general the Lorentz symmetry restoration is delicate and may depend on stringent fine-tuning, our results provide a more favorable scenario in the large-NN framework. We also consider supersymmetric extension in this nonrelativistic situation.Comment: 28 pages, 4 figures, minor clarifications, typos corrected, published versio

    Equivalence classes for gauge theories

    Get PDF
    In this paper we go deep into the connection between duality and fields redefinition for general bilinear models involving the 1-form gauge field AA. A duality operator is fixed based on "gauge embedding" procedure. Dual models are shown to fit in equivalence classes of models with same fields redefinitions

    Duality and fields redefinition in three dimensions

    Full text link
    We analyze local fields redefinition and duality for gauge field theories in three dimensions. We find that both Maxwell-Chern-Simons and the Self-Dual models admits the same fields redefinition. Maxwell-Proca action and its dual also share this property. We show explicitly that a gauge-fixing term has no influence on duality and fields redefinition.Comment: 8 pages, suppressed contents. To appear in J. Phys.

    On Ward Identities in Lifshitz-like Field Theories

    Get PDF
    In this work, we develop a normal product algorithm suitable to the study of anisotropic field theories in flat space, apply it to construct the symmetries generators and describe how their possible anomalies may be found. In particular, we discuss the dilatation anomaly in a scalar model with critical exponent z=2 in six spatial dimensions.Comment: Clarifications adde

    Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions

    Full text link
    We derive the energy levels associated with the even-parity wave functions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the boundary conditions at the origin. This problem calls the attention of the students to an inaccurate statement in quantum mechanics textbooks often found in the context of solution of the harmonic oscillator problem.Comment: 9 pages, 3 figure
    corecore