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Ward identities in Lifshitz-like field theories

Pedro R. S. Gomes* and M. Gomes†

Instituto de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05315-970, São Paulo, SP, Brazil
(Received 21 December 2011; published 9 March 2012)

In this work, we develop a normal product algorithm suitable to the study of anisotropic field theories in

flat space, apply it to construct the symmetries generators and describe how their possible anomalies may

be found. In particular, we discuss the dilatation anomaly in a scalar model with critical exponent z ¼ 2 in

six spatial dimensions.

DOI: 10.1103/PhysRevD.85.065010 PACS numbers: 11.30.�j, 11.10.Gh

I. INTRODUCTION

Aiming the ultraviolet improvement of the perturbative
series without the introduction of ghost degrees of free-
dom, field theories with higher spatial derivatives have
been proposed in the literature [1–7]. The characteristic
feature of these proposals is provided by the different
scaling properties of space and time, i.e., xi ! bxi whereas
t ! bzt. The smallest value of the critical exponent z is one
which corresponds to the usual Lorentz symmetric field
theories; higher values of z furnishes models with better
ultraviolet behavior at the expenses of breaking Lorentz
invariance. Many investigations of theories with such
anisotropy have been reported, namely, quantization of
gravitational models [8–13], applications to cosmology
[14–18], studies in Lorentz symmetry restoration and the
renormalization group [19–24] and other aspects of field
theories [25–36].

In a previous work [23] we studied properties of the
renormalization of these anisotropic field theories and
analyzed the renormalization group flows of relevant pa-
rameters in various models with special emphasis on the
possibility of Lorentz symmetry restoration at low ener-
gies. We found that, the restoration requires that the inter-
actions be infrared stable and some process of dimensional
reduction must be furnished to treat the eventual divergen-
ces appearing whenever the higher derivative quadratic
terms are eliminated. Besides the renormalization aspects,
it is natural to investigate the underlying symmetries and
their possible anomalies. In the usual relativistic setting,
special interest is devoted to the conformal and chiral
anomalies not only for their conceptual aspects but also
for phenomenological applications (see [37] and referen-
ces therein). For anisotropic space-time models these
anomalies have been discussed in [38] for a scalar field
coupled to a Hořava-Lifshitz background and in [20,39,40]
for the chiral anomaly of Dirac fermions coupled to gauge
and gravitational fields. Pursuing these studies, in the
present work we generalize Zimmermann’s normal prod-
uct algorithm [41], which for Lorentz symmetric theories

has proved to be a very powerful tool [42]. We then apply
the formalism to the analysis of the scale symmetry in a
renormalizable ’4 model with z ¼ 2 in six spatial dimen-
sions where it is renormalizable.
Our work is organized as follows. In Sec. II we recall

and extend the basics of the normal product algorithm
which shall be used in the sequel. Thus, in Sec. III we
derive the conservation laws associated to space and time
translations. Because of the breaking of Lorentz invariance
inherent to theories with higher spatial derivatives, these
two symmetries are considered separately. In Sec. IV we
examine the dilatation current and explicitly analyze the
anomaly in its conservation law. A summary and additional
remarks are presented in the Conclusions. One Appendix
to study Noether’s theorem appropriated to higher deriva-
tive theories is included.

II. NORMAL PRODUCTS IN ANISOTROPIC
FIELD THEORIES

Throughout this work we will consider the BPHZ re-
normalized anisotropic scalar field model, with z ¼ 2 in
d ¼ 6 spatial dimensions, given by

L ¼1

2
ð1þAÞ@0’@0’�ðb2þBÞ

2
@i’@i’

�ða2þCÞ
2

�’�’�ðm2þDÞ
2

’2�ð�þEÞ
4!

’4; (1)

where A, B, C, D and E are finite counterterms fixed
according to appropriated renormalization conditions, b2,
a2, m2 and � are the original parameters in the Lagrangian
and � denotes the spatial Laplacian � � @i@i.
Before embarking into the analysis of the model (1), it is

useful to recall and generalize the BPHZ normal product
formalism [41,42]. Thus, let O be some formal product of
fields and their derivatives. Associated to the operator O,
there exists an infinite set of normal products N�, where �,
the degree of the normal product, must be an integer
greater than or equal to the canonical dimension of the
operator O. More precisely,

h0jTN�½O�Xj0i � Finite Part of h0jTOXj0i; (2)
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where X � Q
i’iðxiÞ with ’j designating the field of type

‘‘j’’, either bosonic or fermionic. The prescription to get
the finite part can be described as follows. We suppose that,
without the normal product insertion, the Green’s function
are already renormalized, according to the BPHZ scheme.
However, in the presence of the formal productO there are
additional divergences that need to be subtracted. Indeed,
the superficial degree of divergence for a generic proper
graph G, with NB and NF bosonic and fermionic external
lines, is in the anisotropic case

dðGÞ ¼ dþ z� Dim½’�NB � Dim½c �NF

�X
a

ðdþ z� Dim½Va�Þ; (3)

where the sum is over all vertices of G, the dimensions of
the bosonic (’) and fermionic (c ) fields are

Dim ½’� ¼ d� z

2
; Dim½c � ¼ d

2
(4)

and Dim½Va� ¼ Da þ Dim½’��B
a þ Dim½c ��F

a . �
B
a and �F

a

are the number of bosonic and fermionic lines joining
at the vertex Va and Da counts the number of momenta
factors in the vertex, z for a timelike and one for a spacelike
component.

In a renormalizable model all vertices coming from the
Lagrangian are assumed to have Dim½Va� ¼ dþ z,
whereas for the special vertex VO, associated to the opera-
tor O, we make the replacement Dim½O� ! �. This
designation is convenient although it implies that super-
renormalizable vertices are going to be oversubtracted. By
taking into consideration these observations, the degree
function �ð�Þ for a generic proper graph � is defined to be

�ð�Þ¼
8<
:
��Dim½’�NB�Dim½c �NF; if VO2�

dþz�Dim½’�NB�Dim½c �NF; if VO2�:
(5)

Finally, the finite part prescription consists in the applica-
tion of the forest formula of the BPHZ scheme, such that
for a proper primitively divergent diagram �wemust apply
the Taylor operator of degree �ð�Þ,

t�ð�ÞI� � X½ð�ð�ÞÞ=z�

s¼0

ps
0

s!

@s

@ps
0

X�ð�Þ�sz

n¼0

pi1 . . .pin

n!

@

@pi1

. . .
@

@pin

I�;

(6)

where ½x� is the greatest integer less than or equal to x, ps
0

symbolically stands for the product of s timelike compo-
nents of an independent set of external momenta; pi de-
notes the i-th spacelike momentum (with the index of the
component implicit) and all derivatives are computed at
zero external momenta.

The normal products so defined satisfy a set of rules that
enable us to derive Ward identities in a systematic way. To
exemplify the general procedure let us consider the case
of a partially conserved symmetry, i.e., a symmetry that

formally holds when the breaking parameters vanish (as
the dilatation symmetry in (1) when b andm go to zero). In
the normal product formalism, the conservation law asso-
ciated with a partially conserved continuous symmetry is
obtained by taking as the generator of the transformations
the normal product of the corresponding Noether’s current.
One then studies the object

@�h0jTN½J��ðxÞY’ðxiÞj0i; (7)

where the degree of the normal product, for each compo-
nent of the current J�, should be the minimal leading to a
well defined expression. As explained below, the derivative
can be taken inside the normal product symbol by ade-
quately increasing the degree of the normal product. The
equations of motion are afterwards applied producing
Dirac delta terms characteristics of the symmetry accom-
panied by other terms which break the symmetry.
Generally, the breaking terms are oversubtracted and to
investigate their persistence at the symmetry limit,
Zimmermann identities, to be discussed shortly, are used
to reduce the degrees of the normal products to the minimal
ones what unveils the anomalies. To implement this algo-
rithm the normal product formalism furnishes the follow-
ing rules:
(1) Differentiation rule. It can be show that

@0h0jTN�½O�Xj0i¼ h0jTN�þz½@0O�Xj0i and

@ih0jTN�½O�Xj0i¼ h0jTN�þ1½@iO�Xj0i: (8)

In fact, these results follow easily from the obser-
vation that the anisotropic Taylor operator of degree
� satisfy p0t�pfðpÞ ¼ t�þz

p ðp0fðpÞÞ and pit�pfðpÞ ¼
t�þ1
p ðpifðpÞÞ.

(2) Equation of motion. It is the quantum version of the
classical (Euler-Lagrange) equation of motion and
for the model (1) it is given by

h0jTN8½’ð@20�b2�þa2�2þm2Þ’�ðxÞXj0i
¼�Ah0jTN8½’@20’�ðxÞXj0i

þBh0jTN8½’�’�ðxÞXj0i
�Ch0jTN8½’�2’�ðxÞXj0i
�Dh0jTN8½’2�ðxÞXj0i

�ð�þEÞ
3!

h0jTN8½’4�ðxÞXj0i

� i
XN
i¼1

�ðx�xiÞh0jTXj0i: (9)

This expression may be derived by noting that in
momentum space the operator applied on ’, in the
left hand side of the above equation, is equal to �i
times the inverse of the free field propagator.
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(3) Zimmermann identities. These are identities relating
normal products of different degrees associated to
the same formal product. Using again the model (1),
let us consider some examples that will be used later
on. First, to the operator ’2, with dimension
Dim½’2� ¼ 4, we want to obtain the terms collec-
tively denoted by R in the relation

h0jTN8½’2�Xj0i ¼ h0jTN4½’2�Xj0i þR: (10)

The degree functions for the N4 and N8 normal
products are respectively: �1ð�Þ ¼ 4� 2N� and

�2ð�Þ ¼ 8� 2N�. Thus:

(a) For graphs with N� ¼ 2, �1ð�Þ ¼ 0 and �2ð�Þ ¼ 4.

Notice first that the subtraction term without deriva-
tives is present in both schemes so that it does not
contribute to their difference. The subtractions
with �2 produce the following additional terms:
h0jTN8½’�’�Xj0i and h0jTN8½@i’@i’�Xj0i with
second order derivatives, and h0jTN8½’@20’�Xj0i,
h0jTN8½@0’@0’�Xj0i, h0jTN8½�’�’�Xj0i,
h0jTN8½’�2’�Xj0i, h0jTN8½@i@j’@i@j’�Xj0i and

h0jTN8½�@i’@i’�Xj0i with fourth order deriva-
tives. Note that the terms of the second order de-
rivatives are oversubtracted and can be still reduced,
i.e., may be written in terms of minimally subtracted
normal products.

(b) For graphs with N� ¼ 4, �1ð�Þ¼�4 and �2ð�Þ¼0.

The difference between the two normal products is
just the subtraction term without derivatives associ-
ated to the scheme with �2. This counterterm is
therefore h0jTN8½’4�Xj0i.
We could now collect all the contributions described
above to explicitly write the terms denoted by R in
(10) but, instead, we will do that just for the inte-
grated normal products, a procedure that avoids the
dissemination of parameters and that will be useful
later on. In this situation, we obtain

Z
dx0d6xh0jTN8½’2�ðxÞXj0i

¼
Z

dx0d6xh0jTfN4½’2�ðxÞ
þ pN8½’�’�ðxÞ þ sN8½@0’@0’�ðxÞ
þ uN8½’�2’�ðxÞ þ vN8½’4�ðxÞgXj0i: (11)

The coefficients p, s, u, v are determined from
normalization conditions, as we will show shortly.
Incidentally, a simple dimensional analysis show
us that: Dim½p� ¼ �2 and Dim½s� ¼ Dim½u� ¼
Dim½v� ¼ �4. This detail will be important in the
study of the dilatation anomaly. After noticing that
the term h0jTN8½’�’�Xj0i is oversubtracted we can
follow a similar reasoning as before to verify that

Z
dx0d6xh0jTN8½’�’�ðxÞXj0i

¼
Z

dx0d6xh0jTfN6½’�’�ðxÞ
þ gN8½@0’@0’�ðxÞ þ kN8½’�2’�ðxÞ
þ lN8½’4�ðxÞgXj0i: (12)

From Eqs. (11) and (12) it follows now that

Z
dx0d6xh0jTN8½’2�ðxÞXj0i

¼
Z

dx0d6xh0jTfN4½’2�ðxÞ þ pN6½’�’�ðxÞ
þ ðsþ pgÞN8½@0’@0’�ðxÞ
þ ðuþ pkÞN8½’�2’�ðxÞ
þ ðvþ plÞN8½’4�ðxÞgXj0i: (13)

(4) Normalization conditions. As the normal products
are defined by subtracting divergences through
the application of Taylor operators, they satisfy
simple normalization conditions as we will describe
now. Thus, if DM is a differential operator of degree
M � zM0 þM1 in the momenta,

DM ¼ @M0þM1

@p0
1 � � � @p0

M0
@pi1

M0þ1 � � � @p
iM1

M0þM1

; (14)

then

DM�ðNÞ
O;�ðp; p1; � � � ; pNÞjp¼p1¼���¼0

¼ contribution of trivial diagram; (15)

if 0 � M � �� Dim½’�NB � Dim½c �NF, i.e., the
order of differential operator must be lower than the

degree of the Taylor operator. �ðNÞ
O;�ðp; p1; � � � ; pNÞ

denotes the (amputated) vertex function of N ¼
NB þ NF points with the insertion of the normal
product N�½OðxÞ�:
ð2�Þdþ1�ðpþ p1 þ � � � þ pNÞ�ðNÞ

O;�ðp; p1; � � � ; pNÞ

�
Z

dx0ddx
YN
i¼1

dx0i d
dxi

� e
i

�
pxþP pkxk

�
h0jTN�½OðxÞ�’1ðx1Þ � � �

� ’NðxNÞj0iprop; (16)

where prop means proper diagrams, i.e., 1PI
diagrams.

We may use now the property (15) to fix the parameters
in the above Zimmermann identities. To determine g in
Eq. (12), for example, we rewrite that equation for the
vertex functions defined by (16) with N ¼ 2, apply the
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operator of fourth order D4 ¼ @2=@p0
1@p

0
1 and then put the

external momenta equal to zero. The only terms that sur-

vive are: the term accompanying g, i.e., �ð2Þ
@0’@0’;8

, which

has only the trivial contribution; and the term involving the

reduced normal product �ð2Þ
’�’;6. This yields

g ¼ 1

4

@2

@p0
1@p

0
1

Z
dxdx1dx2e

ip1x1þip2x2

� h0jTN6½’�’�ðxÞ’ðx1Þ’ðx2Þj0ipropjp1¼p2¼0; (17)

where we defined dx � dx0d
6x. The others coefficients

can be determined similarly and we get

k ¼ � 1

384

@4

@pi
1@p

i
1@p

j
1@p

j
1

Z
dxdx1dx2e

ipxþip1x1þip2x2

� h0jTN6½’�’�ðxÞ’ðx1Þ’ðx2Þj0ipropjp¼p1¼p2¼0 (18)

and

l ¼ � 1

4!

Z
dx

Y4
i¼1

dxie
ipxþi

P
k

pkxkh0jTN6½’�’�ðxÞ’ðx1Þ’ðx2Þ’ðx3Þ’ðx4Þj0ipropjp¼p1¼���¼p4¼0: (19)

From these expressions we may verify that all these co-
efficients start contributing in second order in the coupling
constant. A similar analysis for Zimmermann identity (11)
show us that also p, s, u, v all start at second order in
the coupling constant. Thus, terms like pg appearing in
sþ pg are of higher order when compared with s. This
analysis of order, as well as the dimensions of parameters
involved in the Zimmermann identities, will be important
in the determination of the dilatation anomaly.

Now, we are ready to discuss the conservation laws at
quantum level and then investigate the existence of anoma-
lies. Let us start with space and time translations invariance.

III. ENERGY-MOMENTUM TENSOR

The classical energy-momentum tensor can be easily
constructed from Noether’s theorem for theories with
higher derivatives (see the Appendix) applied to space-
time translations x� ! x� þ ��. Because of the asymmet-
ric form of the Lagrangian, we need to distinguish two
cases:

(a) Invariance under time translations. The components
of the conserved current are

�00¼ð1þAÞ@0’@0’�L;

�i0¼�ðb2þBÞ@i’@0’�ða2þCÞ�’@i@0’
þða2þCÞð@i�’Þ@0’; (20)

which satisfy @0�00 þ @i�i0 ¼ 0 leading to the
conservation of the energy H ¼ R

d6x�00.
(b) Invariance under spatial translations. In this case the

components of the conserved current are

�0j ¼ ð1þ AÞ@0’@j’; (21)

�ij ¼ �ðb2 þ BÞ@i’@j’� ða2 þ CÞ�’@i@j’
þ ða2 þ CÞð@i�’Þ@j’� �ijL; (22)

such that @0�0j þ @i�ij ¼ 0 implies in the conser-

vation of the j component of the momentum:R
d6x�0j.

At the quantum level, to eliminate divergences, we
should use normal products to define the energy and mo-
mentum operators. Thus, notice that these components
have different dimensions: Dim½�00� ¼ 8, Dim½�0i� ¼
7, Dim½�i0� ¼ 9 and Dim½�ij� ¼ 8. So, we shall use

the following normal products h0jTN8½�00�Xj0i,
h0jTN7½�0i�Xj0i, h0jTN9½�i0�Xj0i and h0jTN8½�ij�Xj0i.
According to the rules of normal products of the previous
section, we get the analogous of the conservation equations
at the quantum level:

@0h0jTN8½�00�ðxÞXj0i þ @ih0jTN9½�i0�ðxÞXj0i
¼ �i

X
k

�ðx� xkÞh0jT@0’ðxÞXkj0i (23)

and

@0h0jTN7½�0j�ðxÞXj0i þ @ih0jTN8½�ij�ðxÞXj0i
¼ �i

X
k

�ðx� xkÞh0jT@j’ðxÞXkj0i; (24)

where Xk is equal to the X but with the field ’ðxkÞ omitted.
By integrating over the space-time, the left hand sides
of (23) and (24) vanish and we getX

k

h0jT@0’ðxkÞXkj0i ¼ 0 and

X
k

h0jT@j’ðxkÞXkj0i ¼ 0:
(25)

These Ward identities reflect the invariance of the Green
functions under space and time translations.

IV. DILATATION ANOMALY

A. Classical analysis

The crucial modification in anisotropic theories are just
that of scale transformations, due to the anisotropic scaling
between space and time,

xi ! e�xi and x0 ! ðe�Þzx0: (26)

Under this scaling, the scalar field transform as ’ðxÞ !
’0ðx0Þ ¼ e��Dim½’�’ðxÞ, whose infinitesimal version is
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�’ðxÞ � ’0ðxÞ � ’ðxÞ ¼ �½Dim½’� þ zx0@0 þ xi@i�’ðxÞ:
(27)

We are particularly interested in the study of the conse-
quences of this anisotropic scaling for the dilatation
anomaly. Let us consider the Lagrangian (1) without the
finite counterterms that for our (classical) purpose are not
necessary,

L ¼1

2
@0’@0’�b2

2
@i’@i’�a2

2
�’�’�m2

2
’2� �

4!
’4:

(28)

The dimensional parameters b2 and m2 in this Lagrangian
break the scale invariance as Dim½m2� ¼ 4 and Dim½b2� ¼
2. On the other hand, when b2 and m2 ! 0, we have a
classical conserved current. By splitting the Lagrangian in
two parts, L ¼ Linv þLbr, with

L inv � 1

2
@0’@0’� a2

2
�’�’� �

4!
’4 (29)

and

L br � �b2

2
@i’@i’�m2

2
’2; (30)

we observe that, under the transformation (26),

�Linv ¼ �½2@0ðx0LinvÞ þ @iðxiLinvÞ�; (31)

is a total derivative. However, the same does not happen
with Lbr:

�Lbr¼�½2@0ðx0LbrÞþ@iðxiLbrÞ�þ�ðb2@i’@i’þ2m2’2Þ:
(32)

From these results, the components of the Noether’s cur-
rent can be constructed,

J0 ¼ 2’@0’þ 2x0�00 þ xi�0i (33)

and

Ji ¼ �3a2�’@i’þ 2a2ð@i�’Þ’� 2b2’@i’þ 2x0�i0

þ xj�ji; (34)

which satisfies

@0J
0 þ @iJ

i ¼ b2@i’@i’þ 2m2’2; (35)

such that when m2 and b2 ! 0, we have the conservation
law. On the other hand, in the quantum case we need to
consider the subtraction scheme to provide a precise mean-
ing for the expressions involving operators at the same
point, giving rise to the anomaly.

B. Quantum analysis

Now, let us apply the normal product method to the
construction of the dilatation current. The dimension of
components of the current are: Dim½J0� ¼ 6 and
Dim½Ji� ¼ 7. So, we need to consider the normal products
h0jTN6½J0�ðxÞXj0i and h0jTN7½Ji�ðxÞXj0i. We are going to
investigate the conservation law

@0h0jTN6½J0�Xj0iþ@ih0jTN7½Ji�Xj0i
¼? �i

X
k

�ðx�xkÞh0jTðDim½’�þ2x0@0þxi@iÞ’ðxkÞXkj0i:

(36)

Let us rewrite the formal components of the current in-
cluding the finite counterterms

J0 ¼ dað1þ AÞ’@0’þ 2x0�00 þ xi�0i (37)

and

Ji¼�3ða2þCÞ�’@i’þ2ða2þCÞð@i�’Þ’
�2ðb2þBÞ’@i’þ2x0�i0þxj�ji; (38)

where da is the dimension of the scalar field. In lowest
order of perturbation da ¼ 2, but we know that in the
quantum case it suffers radiative corrections, i.e., da ¼
2þOð�Þ. In order to evaluate (36) it is convenient to use
the identities

h0jTN8½xi@0�0i�Xj0i ¼ xi@0h0jTN7½�0i�Xj0i (39)

and

h0jTN8½x0@i�i0�Xj0i ¼ x0@ih0jTN9½�i0�Xj0i: (40)

Furthermore, employing the equations of the energy and
momentum conservation (23) and (24), and the equation of
motion (9), we get

@0h0jTN6½J0�Xj0i þ @ih0jTN7½Ji�Xj0i ¼ ðda � 2Þð1þ AÞh0jTN8½@0’@0’�Xj0i þ ðda � 2Þðb2 þ BÞh0jTN8½’�’�Xj0i
� ðda � 2Þða2 þ CÞh0jTN8½’�2’�Xj0i � ðda � 4Þðm2 þDÞh0jTN8½’2�Xj0i

� ðda � 2Þ ð�þ EÞ
3!

h0jTN8½’4�Xj0i þ ðb2 þ BÞh0jTN8½@i’@i’�Xj0i
� i

X
k

�ðx� xkÞh0jTðda þ 2x0@0 þ xi@iÞ’ðxkÞXkj0i: (41)

By integrating over the space and time, this expression reads
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i
X
k

h0jTðda þ 2x0@0 þ xi@iÞ’ðxkÞXkj0i ¼
Z

dx0d6x

�
ðda � 2Þð1þ AÞh0jTN8½@0’@0’�Xj0i

þ ðda � 3Þðb2 þ BÞh0jTN8½’�’�Xj0i � ðda � 2Þða2 þ CÞh0jTN8½’�2’�Xj0i

� ðda � 4Þðm2 þDÞh0jTN8½’2�Xj0i � ðda � 2Þ ð�þ EÞ
3!

h0jTN8½’4�Xj0i
�
:

(42)

Now, we may use Zimmermann identities (12) and (13) to reduce the normal products involving oversubtractions
h0jTN8½’�’�Xj0i and h0jTN8½’2�Xj0i. The final result is

i
X
k

h0jTðdaþ2x0@0þxi@iÞ’ðxkÞXkj0i¼
Z
dx0d6x

�
�ðda�4Þðm2þDÞh0jTN4½’2�Xj0iþ½ðda�3Þðb2þBÞ

�ðda�4Þðm2þDÞp�h0jTN6½’�’�Xj0iþ½ðda�2Þð1þAÞþðda�3Þðb2þBÞg
�ðda�4Þðm2þDÞs�h0jTN8½@0’@0’�Xj0iþ½�ðda�2Þða2þCÞ
þðda�3Þðb2þBÞk�ðda�4Þðm2þDÞu�h0jTN8½’�2’�Xj0i

þ
�
�ðda�2Þð�þEÞ

3!
þðda�3Þðb2þBÞl�ðda�4Þðm2þDÞv

�
h0jTN8½’4�Xj0i

�
;

(43)

where we have redefined: s � sþ pg, u � uþ pk and v � vþ pl. To have scale invariance symmetry of the Green
functions, the coefficient of the three normal products N8 must vanish independently, which leads to the conditions

ðda � 2Þð1þ AÞ þ ðda � 3Þðb2 þ BÞg� ðda � 4Þðm2 þDÞs ¼ 0; (44)

� ðda � 2Þða2 þ CÞ þ ðda � 3Þðb2 þ BÞk� ðda � 4Þðm2 þDÞu ¼ 0 (45)

and

� ðda � 2Þ ð�þ EÞ
3!

þ ðda � 3Þðb2 þ BÞl� ðda � 4Þðm2 þDÞv ¼ 0: (46)

Let us discuss the consistency of these equations. First of
all, as noticed before, the terms g, s, k, u, l and v are of the
second order in the coupling constant. So, by writing da ¼
2þ dð1Þa þ dð2Þa þ � � � , where the superscript denotes the
order in the coupling constant, the Eq. (44) show us that
dð1Þa ¼ 0. By writing explicitly the order of each term, we
obtain the consistency condition at lowest non trivial order

dð2Þa � b2gð2Þ þ 2m2sð2Þ ¼ 0; (47)

� a2dð2Þa � b2kð2Þ þ 2m2uð2Þ ¼ 0 (48)

and

� b2lð2Þ þ 2m2vð2Þ ¼ 0: (49)

We will investigate this equations in the limit b2, m2 ! 0.
Apparently, this equations are solved by letting b2,m2 ¼ 0
and also dð2Þa ¼ 0. However, from the dimensional analysis
of the parameters of the model, it follows that gð2Þ ¼
�2

b2
F ðm2=b4; a2Þ, where F is a dimensionless function of

the parameters of the theory. Thus, the product b2gð2Þ does
not vanish when b2, m2 ! 0, with m2=b4 ! fixed. The

mass term behave analogously: sð2Þ can be written as sð2Þ ¼
�2

m2 Gðm2=b4; a2Þ and then the product m2sð2Þ does not van-
ish in the limit b2,m2 ! 0, withm2=b4 ! fixed. The same
happens with the others terms in the Eqs. (48) and (49): in
the specified limit none of the terms containing m2 or b2

vanishes. To see this explicitly, let us consider, for ex-
ample, the condition (49) in the limit b2, m2 ! 0, but
m2=b4 � c > 0. The expression for lð2Þ is given by (19),
whereas vð2Þ has the same form that (19), but with the
replacing of the normal product N6½’�’� by N4½’2�. So,
the left hand side of Eq. (49) is

6i3�2

4!

Z dk0
2�

d6k

ð2�Þ6
ðb2k2 þ 2m2Þ

½k20 � b2k2 � a2ðk2Þ2 �m2 þ i��3 :
(50)

By taking the limit above mentioned we get

6i3�2

4!

Z dk0
2�

d6k

ð2�Þ6
ðk2 þ 2cÞ

½k20 � k2 � a2ðk2Þ2 � cþ i��3

¼ 1

4!

3

512�3

�2

a3
; (51)
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which is not zero for any finite a. This shows that Eq. (49)
cannot be satisfied, and yields to the anomalous behavior of
the quantum Ward identity.

V. CONCLUSIONS

In this work, we extended the method of the normal
products to anisotropic theories, what enables us to pro-
ceed a systematic analysis of Ward identities. In particular,
we investigated the symmetry under space and time trans-
lations in a ’4 model and with z ¼ 2 in six spatial dimen-
sions, where the theory becomes renormalizable. Next, we
studied the dilatation anomaly, caused by the necessity of
the introduction of a scale in the renormalization proce-
dure. When compared with the relativistic case (z ¼ 1,
a ¼ 0, d ¼ 3, with b dimensionless), in the anisotropic
situation more dimensional parameters are involved, asso-
ciated with the scale invariance breaking operators
b2@i’@i’ and m2’2 in the Lagrangian and hence in the
divergence of the dilatation current. In the context of the
normal product formalism, these two operators appear
oversubtracted, which means that they will produce addi-
tional contributions to the anomaly. So, we may intuit that
the anomaly is different from the relativistic case, what was
explicitly verified in (43) and in the consistency conditions
subsequently listed.

As expected, the divergence of the dilatation current is
related to the renormalization group beta function. In fact,
a precise calculation show us that it is given essentially by

(49), namely,	ð�Þ¼4!ð�b2lð2Þ þ2m2vð2ÞÞ¼ ð3=512�3Þ�
ð�2=a3Þ. This beta function was also obtained in [23].
These aspects of the dilatation anomaly are in contrast
with the axial anomaly in gauge theories. As shown in
[20,39,40] by using the functional integral method, the
form of the axial anomaly in the anisotropic situation is
exactly the same as in its relativistic counterpart. It has
been argued that these differences are related to the ultra-
violet character of the dilatation anomaly and the infrared
nature of the axial anomaly [43].
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APPENDIX: NOETHER’S THEOREM
FOR LAGRANGIANS WITH THIRD

ORDER DERIVATIVES

For completeness, in this Appendix we present a deri-
vation of Noether’s theorem appropriated to the cases
studied in the text. Let us suppose that the basic field
changes continuously from ’ðxÞ to ’ðxÞ þ �’ so that the
Lagrangian density changes as

�L ¼ @L
@


�’þ @L
@@�’

�@�’þ @L
@@�@�’

�@�@�’

þ @L
@@�@�@�’

�@�@�@�’: (A1)

Now, using the Euler-Lagrange equation of motion,

�@L
@’

þ@�
@L

@@�’
�@�@�

@L
@@�@�’

þ@�@�@�
@L

@@�@�@�’

¼0; (A2)

we get

�L ¼ @�

�
@L

@@�’
�’þ @L

@@�@�’
@
$
��’

�

þ
�
@�@�@�

@L
@@�@�@�’

�
�’

þ @L
@@�@�@�’

�@�@�@�’; (A3)

yielding

�L¼@�

�
@L

@@�’
�’þ @L

@@�@�’
@
$
��’

�

þ@�

�
@�@�

@L
@@�@�@�’

�’

�

�@�

�
@�

@L
@@�@�@�’

@��’

�
þ@�

@L
@@�@�@�’

@�@��’

þ @L
@@�@�@�’

�@�@�@�’; (A4)

where A@
$
�B � A@�B� ð@�AÞB. On the other hand, with-

out using the equation of motion, if we could show that the
change in the Lagrangian is a total derivative �L ¼ @�S

�,

we may therefore define a conserved current by

J�� @L
@@�’

�’þ
�

@L
@@�@�’

�@�
@L

@@�@�@�’

�
@
$
��’

þ @L
@@�@�@�’

@�@��’�S�: (A5)

This result may be generalized. If the Lagrangian contains
derivatives up to fourth order we arrive at

J�¼ @L
@@�’

�’þ
�

@L
@@�@�’

�@�
@L

@@�@�@�’

þ@�@�
@L

@@�@�@�@�’

�
@
$
��’þ @L

@@�@�@�’
@�@��’

þ @L
@@�@�@�@�’

@
$
�ð@�@��’Þ�S�: (A6)
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