26 research outputs found

    Joint event: 8th Regional Symposium on Electrochemistry of South-East Europe (RSE-SEE 8) and 9th Kurt Schwabe Symposium

    Get PDF
    After a one-year delay caused by the COVID-19 pandemic, the 8th Regional Symposium on Electrochemistry of South-East Europe was held jointly with the 9th Kurt Schwabe Symposium from July 11-15, 2022 at Graz University of Technology in Austria. This special edition of the jESE contains a collection of articles presented at this meeting. The 5-day event (including Monday’s Satellite Student Symposium) organized by the Association of South-East European Electrochemists (ASEEE) featured 5 plenaries, 15 keynotes, 71 contributed talks and 38 posters and was attended by 152 scientists and researchers from 23 countries

    Persistent and reversible solid iodine electrodeposition in nanoporous carbons

    Get PDF
    Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries

    Substrate-induced coagulation (SIC) of nano-disperse carbon black in non-aqueous media : a method of manufacturing highly conductive cathode materials for Li-ion batteries by self-assembly

    Full text link
    Substrate-induced coagulation (SIC) is a coating process based on self-assembly for coating different surfaces with fine particulate materials. The particles are dispersed in a suitable solvent and the stability of the dispersion is adjusted by additives. When a surface, pre-treated with a flocculant e.g. a polyelectrolyte, is dipped into the dispersion, it induces coagulation resulting in the deposition of the particles on the surface. A non-aqueous SIC process for carbon coating is presented, which can be performed in polar, aprotic solvents such as N-Methyl-2- pyrrolidinone (NMP). Polyvinylalcohol (PVA) is used to condition the surface of substrates such as mica, copperfoil, silicon-wafers and lithiumcobalt oxide powder, a cathode material used for Li-ion batteries. The subsequent SIC carbon coating produces uniform layers on the substrates and causes the conductivity of lithiumcobalt oxide to increase drastically, while retaining a high percentage of active battery material.<br /
    corecore