8,513 research outputs found

    Hitchhiker capabilities

    Get PDF
    A carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker can accommodate up to 750 lb of customer payloads in canisters or mounted to an exposed side-mount plate, or up to 1200 lb mounted on a cross-bay structure. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. A general description of the Hitchhiker program and the Shuttle Payload of Opportunity Carrier (SPOC) is given and future enhancements are outlined

    Hitchhiker-G: A new carrier system for attached shuttle payloads

    Get PDF
    A new carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker-G can accommodate up to 750 lb. of customer payloads in canisters or mounted to an exposed plate. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry, and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. The first Hitchhiker-G was successfully flown in January 1986 on STS 61C

    Nonapproximability Results for Partially Observable Markov Decision Processes

    Full text link
    We show that for several variations of partially observable Markov decision processes, polynomial-time algorithms for finding control policies are unlikely to or simply don't have guarantees of finding policies within a constant factor or a constant summand of optimal. Here "unlikely" means "unless some complexity classes collapse," where the collapses considered are P=NP, P=PSPACE, or P=EXP. Until or unless these collapses are shown to hold, any control-policy designer must choose between such performance guarantees and efficient computation

    Herschel Measurements of Molecular Oxygen in Orion

    Get PDF
    We report observations of three rotational transitions of molecular oxygen (O_2) in emission from the H_2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s^(–1) to 12 km s^(–1) and widths of 3 km s^(–1). The beam-averaged column density is N(O_2) = 6.5 × 10^(16) cm^(–2), and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19"), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O_2 relative to H_2 is (0.3-7.3) × 10^(–6). The unusual velocity suggests an association with a ~5" diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is ~10 M_⊙ and the dust temperature is ≥150 K. Our preferred explanation of the enhanced O_2 abundance is that dust grains in this region are sufficiently warm (T ≥ 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O_2. For this small source, the line ratios require a temperature ≥180 K. The inferred O_2 column density ≃5 × 10^(18) cm^(–2) can be produced in Peak A, having N(H_2) ≃4 × 10^(24) cm^(–2). An alternative mechanism is a low-velocity (10-15 km s^(–1)) C-shock, which can produce N(O_2) up to 10^(17) cm^(–2)

    On the Minimax Capacity Loss under Sub-Nyquist Universal Sampling

    Full text link
    This paper investigates the information rate loss in analog channels when the sampler is designed to operate independent of the instantaneous channel occupancy. Specifically, a multiband linear time-invariant Gaussian channel under universal sub-Nyquist sampling is considered. The entire channel bandwidth is divided into nn subbands of equal bandwidth. At each time only kk constant-gain subbands are active, where the instantaneous subband occupancy is not known at the receiver and the sampler. We study the information loss through a capacity loss metric, that is, the capacity gap caused by the lack of instantaneous subband occupancy information. We characterize the minimax capacity loss for the entire sub-Nyquist rate regime, provided that the number nn of subbands and the SNR are both large. The minimax limits depend almost solely on the band sparsity factor and the undersampling factor, modulo some residual terms that vanish as nn and SNR grow. Our results highlight the power of randomized sampling methods (i.e. the samplers that consist of random periodic modulation and low-pass filters), which are able to approach the minimax capacity loss with exponentially high probability.Comment: accepted to IEEE Transactions on Information Theory. It has been presented in part at the IEEE International Symposium on Information Theory (ISIT) 201

    Dust emission in the Sagittarius B2 molecular cloud core

    Get PDF
    A model is presented for the dust emission from the Sagittarius B2 molecular cloud core which reproduces the observed spectrum between 30 and 1300 micron, as well as the distribution of the emission at 1300 micron. The model is based on the assumption that Sgr B2(N) continuum source is located behind the dust cloud associated with Sgr B2(M) continuum source. The fact that Sgr B2(N) is stronger at 1300 micron can be attributed to a local column density maximum at the position of this source. Absence of a 53 micron emission peak at the position of Sgr B2(N) suggests that the luminosity of the north source is lower than that of the middle source

    Channel Capacity under Sub-Nyquist Nonuniform Sampling

    Full text link
    This paper investigates the effect of sub-Nyquist sampling upon the capacity of an analog channel. The channel is assumed to be a linear time-invariant Gaussian channel, where perfect channel knowledge is available at both the transmitter and the receiver. We consider a general class of right-invertible time-preserving sampling methods which include irregular nonuniform sampling, and characterize in closed form the channel capacity achievable by this class of sampling methods, under a sampling rate and power constraint. Our results indicate that the optimal sampling structures extract out the set of frequencies that exhibits the highest signal-to-noise ratio among all spectral sets of measure equal to the sampling rate. This can be attained through filterbank sampling with uniform sampling at each branch with possibly different rates, or through a single branch of modulation and filtering followed by uniform sampling. These results reveal that for a large class of channels, employing irregular nonuniform sampling sets, while typically complicated to realize, does not provide capacity gain over uniform sampling sets with appropriate preprocessing. Our findings demonstrate that aliasing or scrambling of spectral components does not provide capacity gain, which is in contrast to the benefits obtained from random mixing in spectrum-blind compressive sampling schemes.Comment: accepted to IEEE Transactions on Information Theory, 201
    corecore