research

Nonapproximability Results for Partially Observable Markov Decision Processes

Abstract

We show that for several variations of partially observable Markov decision processes, polynomial-time algorithms for finding control policies are unlikely to or simply don't have guarantees of finding policies within a constant factor or a constant summand of optimal. Here "unlikely" means "unless some complexity classes collapse," where the collapses considered are P=NP, P=PSPACE, or P=EXP. Until or unless these collapses are shown to hold, any control-policy designer must choose between such performance guarantees and efficient computation

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 31/10/2020