53 research outputs found

    Assessing Blood-Based Biomarkers to Define a Therapeutic Window for Natalizumab

    Get PDF
    Natalizumab is a monoclonal antibody that binds CD49d. Although it is one of the most effective treatments for Relapsing-Remitting Multiple Sclerosis (RRMS), a dosing regimen has not been optimized for safety and efficacy in individual patients. We aimed to identify biomarkers to monitor Natalizumab treatment and to establish a personalized dose utilizing an ongoing longitudinal study in 29 RRMS patients under Natalizumab with standard interval dose (SD) of 300 mg/4 wks or extended interval dose (EID) of 300 mg/6 wks. Blood samples were analyzed by flow cytometry to determine CD49d saturation and expression in several T and B lymphocytes subpopulations. Each patient was analyzed at two different timepoints separated by 3 Natalizumab administrations. Natalizumab and sVCAM-1 levels in serum were also analyzed using ELISA. To determine the reproducibility of various markers, two different timepoints were compared and no significant differences were observed for CD49d expression nor for saturation; SD patients had higher saturation levels (~80%) than EID patients (~60%). A positive correlation exists between CD49d saturation and Natalizumab serum levels. CD49d expression and saturation are stable parameters that could be used as biomarkers in the immunomonitoring of Natalizumab treatment. Moreover, Natalizumab and sVCAM-1 serum levels could be used to optimize an individual's dosing schedule

    Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive Multifocal Leukoencephalopathy in Autoimmune Disorders

    Get PDF
    BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system- (CNS-) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4(+)-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlates with risk of infections during immunosuppressive therapy. We investigated whether iATP may assist in individualized risk stratification for opportunistic infections during mAb-treatment. METHODOLOGY/PRINCIPAL FINDINGS: iATP in PHA-stimulated, immunoselected CD4(+)-cells was analyzed using an FDA-approved assay. iATP of mAb-associated PML (natalizumab (n = 8), rituximab (n = 2), efalizumab (n = 1)), or other cases of opportunistic CNS-infections (HIV-associated PML (n = 2), spontaneous PML, PML in a psoriasis patient under fumaric acids, natalizumab-associated herpes simplex encephalitis (n = 1 each)) was reduced by 59% (194.5±29 ng/ml, mean±SEM) in comparison to healthy controls (HC, 479.9±19.8 ng/ml, p<0.0001). iATP in 14 of these 16 patients was at or below 3(rd) percentile of healthy controls, similar to HIV-patients (n = 18). In contrast, CD4(+)-cell numbers were reduced in only 7 of 15 patients, for whom cell counts were available. iATP correlated with mitochondrial transmembrane potential (ΔΨ(m)) (iATP/ΔΨ(m)-correlation:tau = 0.49, p = 0.03). Whereas mean iATP of cross-sectionally analysed natalizumab-treated patients was unaltered (448.7±12 ng/ml, n = 150), iATP was moderately decreased (316.2±26.1 ng/ml, p = 0.04) in patients (n = 7) who had been treated already during the pivotal phase III trials and had received natalizumab for more than 6 years. 2/92 (2%) patients with less than 24 months natalizumab treatment revealed very low iATP at or below the 3(rd) percentile of HC, whereas 10/58 (17%) of the patients treated for more than 24 months had such low iATP-concentrations. CONCLUSION: Our results suggest that bioenergetic parameters such as iATP may assist in risk stratification under mAb-immunotherapy of autoimmune disorders

    Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment

    Get PDF
    Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy

    Mechanisms for regulation of cellular responsiveness to human IFN-beta1a

    No full text
    Interferons (IFNs) are potent, pleiotropic cytokines, and therefore it is likely that the cell has mechanisms to modulate IFN activity in response to excessive or prolonged IFN exposure. To investigate this question, Jurkat T cells were exposed to IFN-beta1a in vitro. The effect of dose and frequency of IFN treatment on receptor expression, the signal transduction pathway, and biologic activity was examined. Results demonstrate that at even modest doses of IFN (60 IU/ml), cell surface expression of the IFN receptor subunit, IFNAR-1, decreased significantly, and the cells were unresponsive to further IFN treatment. More interestingly, after an initial treatment with very low concentrations of IFN (\u3c10\u3eIU/ml), even when receptor levels remained normal and phosphorylation of signaling molecules occurred, cells were still refractory to further IFN treatment. After withdrawal of IFN, full cellular responsiveness was a progressive but surprisingly slow process. Cells retreated 2 days or 4 days after the initial IFN treatment were still refractory to even high doses (500 IU/ml) of IFN. Cells retreated 1 week after the initial IFN treatment were fully responsive. High levels of Stat1 and Stat2 correlated with the block in transcriptional activation of IFN-dependent genes and may be a mechanism by which cells can downmodulate an IFN response. Similar results were obtained when fresh peripheral blood mononuclear cells (PBMC) were treated with IFN and expression of the endogenous IFN-dependent gene, MxA, was examined. Cell surface levels of IFNAR-1 decreased and Stat1 levels increased after IFN-beta treatment, and retreatment with IFN resulted in an attenuated induction of Mx protein expression. In the context of using IFNs as therapeutic agents in the treatment of human disease, our data suggest that increasing the amount or frequency of IFN administration may not yield desired biologic effects. Thus, issues concerning the dosage and the frequency of IFN-beta administration deserve careful consideration

    Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis.

    Get PDF
    Meningeal inflammation, including the presence of semi-organized tertiary lymphoid tissue, has been associated with cortical pathology at autopsy in secondary progressive multiple sclerosis (SPMS). Accessible and robust biochemical markers of cortical inflammation for use in SPMS clinical trials are needed. Increased levels of chemokines in the cerebrospinal fluid (CSF) can report on inflammatory processes occurring in the cerebral cortex of MS patients. A multiplexed chemokine array that included BAFF, a high sensitivity CXCL13 assay and composite chemokine scores were developed to explore differences in lymphoid (CXCL12, CXCL13, CCL19 and CCL21) and inflammatory (CCL2, CXCL9, CXCL10 and CXCL11) chemokines in a small pilot study. Paired CSF and serum samples were obtained from healthy controls (n=12), relapsing-remitting MS (RRMS) (n=21) and SPMS (N=12). A subset of the RRMS patients (n = 9) was assessed upon disease exacerbation and 1 month later following iv methylprednisone. SPMS patients were sampled twice to ascertain stability. Both lymphoid and inflammatory chemokines were elevated in RRMS and SPMS with the highest levels found in the active RRMS group. Inflammatory and lymphoid chemokine signatures were defined and generally correlated with each other. This small exploratory clinical study shows the feasibility of measuring complex and potentially more robust chemokine signatures in the CSF of MS patients during clinical trials. No differences were found between stable RRMS and SPMS. Future trials with larger patient cohorts with this chemokine array are needed to further characterize the differences, or the lack thereof, between stable RRMS and SPMS
    • …
    corecore