42 research outputs found

    Molecular mechanisms of premature aging in hemodialysis: The complex interplay between innate and adaptive immune dysfunction

    No full text
    Hemodialysis (HD) patient are known to be susceptible to a wide range of early and long-term complication such as chronic inflammation, infections, malnutrition, and cardiovascular disease that significantly affect the incidence of mortality. A large gap between the number of people with end-stage kidney disease (ESKD) and patients who received kidney transplantation has been identified. Therefore, there is a huge need to explore the underlying pathophysiology of HD complications in order to provide treatment guidelines. The immunological dysregulation, involving both the innate and adaptive response, plays a crucial role during the HD sessions and in chronic, maintenance treatments. Innate immune system mediators include the dysfunction of neutrophils, monocytes, and natural killer (NK) cells with signaling mediated by NOD-like receptor P3 (NLRP3) and Toll-like receptor 4 (TLR4); in addition, there is a significant activation of the complement system that is mediated by dialysis membrane-surfaces. These effectors induce a persistent, systemic, pro-inflammatory, and pro-coagulant milieu that has been described as inflammaging. The adaptive response, the imbalance in the CD4+/CD8+ T cell ratio, and the reduction of Th2 and regulatory T cells, together with an altered interaction with B lymphocyte by CD40/CD40L, have been mainly implicated in immune system dysfunction. Altogether, these observations suggest that intervention targeting the immune system in HD patients could improve morbidity and mortality. The purpose of this review is to expand our understanding on the role of immune dysfunction in both innate and adaptive response in patients undergoing hemodialysis treatment

    Hormetic effect(s) of tetracyclines as environmental contaminant on Zea mays

    No full text
    Animal wastes from intensive pig farming as fertilizers may expose crops to antimicrobials. Zea mays cultivations were carried out on a virgin field, subjected to dressing with pig slurries contaminated at 15 mg L(-1) of Oxy- and 5 mg L(-1) of Chlor-tetracycline, and at 8 mg L(-1) of Oxy and 3 mg L(-1) of Chlor, respectively. Pot cultivation was performed outdoor (Oxy in the range 62.5-1000 ng g(-1) dry soil) and plants harvested after 45 days. Tetracyclines analyses on soils and on field plants (roots, stalks, and leaves) did not determine the appreciable presence of tetracyclines. Residues were found in the 45-day pot corn only, in the range of 1-50 ng g(-1) for Oxy in roots, accounting for a 5% carry-over rate, on average. Although no detectable residues in plants from on land cultivations, both experimental batches showed the same biphasic growth form corresponding to a dose/response hormetic curve
    corecore