68 research outputs found

    Ibuprofen Ameliorates Fatigue- And Depressive-Like Behavior in Tumor-Bearing Mice

    Get PDF
    Aims: Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines is associated with skeletal muscle wasting and depressive- and fatigue-like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF. Main methods: Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10 mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis. Key findings: Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice. Significance: Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF

    Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia

    Get PDF
    © 2008 Henry et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Fluoxetine Prevents the Development of Depressive-like Behavior in a Mouse Model of Cancer Related Fatigue

    Get PDF
    Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine

    Tumor Growth Increases Neuroinflammation, Fatigue and Depressive-like Behavior Prior to Alterations in Muscle Function

    Get PDF
    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth

    Central activation of alpha7 nicotinic signaling attenuates lps-induced neuroinflammation and sickness behavior in adult but not in aged animals

    Full text link
    We previously reported that lipopolysaccharide (LPS) challenge caused microglial-mediated neuroinflammation and sickness behavior that was amplified in aged mice. As α7 nAChRs are im-plicated in the “Cholinergic anti-inflammatory pathway”, we aimed to determine how α7 nAChR stimulation modulates microglial phenotype in an LPS-induced neuroinflammation model in adult and aged mice. For this, BALB/c mice were injected intraperitoneally with LPS (0.33 mg/kg) and treated with the α7 nAChR agonist PNU282987, using different administration protocols. LPS challenge reduced body weight and induced lethargy and social withdrawal in adult mice. Peripheral (intraperitoneal) co-administration of the α7 nAChR agonist PNU282987 with LPS, attenuated body weight loss and sickness behavior associated with LPS challenge in adult mice, and reduced microglial activation with suppression of IL-1β and TNFα mRNA levels. Furthermore, central (intracerebroven-tricular) administration of the α7 nAChR agonist, even 2 h after LPS injection, attenuated the decrease in social exploratory behavior and microglial activation induced by peripheral administration of LPS, although this recovery was not achieved if activation of α7 nAChRs was performed peripherally. Finally, we observed that the positive results of central activation of α7 nAChRs were lost in aged mice. In conclusion, we provide evidence that stimulation of α7 nAChR signaling reduces microglial activation in an in vivo LPS-based model, but this cholinergic-dependent regulation seems to be dysfunctional in microglia of aged mice.This work was supported by the Spanish Ministry of Science, innovation and Universities Ref. SAF2015-63935-R and Ref. RTI2018-095793-B-I00 and General Council for Research and Innovation of the Community of Madrid and European Structural Funds Ref. B2017/BMD–3827–NRF24ADCM to M.G.L. Aging studies were supported by an NIA grant (R01-AG-033028) to J.P.G

    IL-4 Signaling Drives a Unique Arginase\u3csup\u3e+\u3c/sup\u3e/IL-1β\u3csup\u3e+\u3c/sup\u3e Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4Rα after Traumatic Spinal Cord Injury

    Get PDF
    Alternative activation of microglia/macrophages (M2a) by interleukin (IL)-4 is purported to support intrinsic growth and repair processes after CNS injury. Nonetheless, alternative activation of microglia is poorly understood in vivo, particularly in the context of inflammation, injury, and aging. Here, we show that aged mice (18-19 months) had reduced functional recovery after spinal cord injury (SCI) associated with impaired induction of IL-4 receptor α (IL-4Rα) on microglia. The failure to successfully promote an IL-4/IL-4Rα response in aged mice resulted in attenuated arginase (M2a associated), IL-1β, and chemokine ligand 2 (CCL2) expression, and diminished recruitment of IL-4Rα+ macrophages to the injured spinal cord. Furthermore, the link between reduced IL-4Rα expression and reduced arginase, IL-1β, and CCL2 expression was confirmed using adult IL-4Rα knock-out (IL-4RαKO) mice. To better understand IL-4Rα-mediated regulation of active microglia, a series of studies was completed in mice that were peripherally injected with lipopolysaccharide and later provided IL-4 by intracerebroventricular infusion. These immune-based studies demonstrate that inflammatory-induced IL-4Rα upregulation on microglia was required for the induction of arginase by IL-4. In addition, IL-4-mediated reprogramming of active microglia enhanced neurite growth ex vivo and increased inflammatory gene expression (i.e., IL-1β and CCL2) and the corresponding recruitment of CCR2+/IL-4Rα+/arginase+ myeloid cells in vivo. IL-4 reprogrammed active microglia to a unique and previously unreported phenotype (arginase+/IL-1β+) that augmented neurite growth and enhanced recruitment of peripheral IL-4Rα+ myeloid cells to the CNS. Moreover, this key signaling cascade was impaired with age corresponding with reduced functional recovery after SCI

    A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI

    Get PDF
    Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI

    Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions between fractalkine (CX<sub>3</sub>CL1) and fractalkine receptor (CX<sub>3</sub>CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX<sub>3</sub>CL1 and CX<sub>3</sub>CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX<sub>3</sub>CR1-deficient mice (CX<sub>3</sub>CR1<sup>-/-</sup>).</p> <p>Methods</p> <p>CX<sub>3</sub>CR1<sup>-/- </sup>mice or control heterozygote mice (CX<sub>3</sub>CR1<sup>+/-</sup>) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions.</p> <p>Results</p> <p>LPS injection caused a prolonged duration of social withdrawal in CX<sub>3</sub>CR1<sup>-/- </sup>mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX<sub>3</sub>CR1<sup>-/- </sup>mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX<sub>3</sub>CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX<sub>3</sub>CR1<sup>-/- </sup>mice. This depression-like behavior in CX<sub>3</sub>CR1<sup>-/- </sup>mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex.</p> <p>Conclusions</p> <p>Taken together, these data indicate that a deficiency of CX<sub>3</sub>CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.</p

    The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer’s Disease

    No full text
    The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered
    corecore