36 research outputs found

    Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets

    Get PDF
    A detailed study is presented that evaluates the relative importance of wave plate behavior, scattering processes and absorption phenomena in transferring optical torque from circularly polarized light to optically trapped nematic droplets. A wide range of parameters is considered: droplet diameters between 1 and 15 µm, birefringence values from 0.15 to 0.26 and trapping beam powers from 50 mW to 400 mW. Wave plate behavior is verified through the dependence of torque on droplet diameter and material birefringence. The dependence of the magnitude of the torque on material birefringence confirms the additional importance of the scattering mechanism. Absorption processes are found to be negligible

    Room-temperature ferroelectric nematic liquid crystal showing a large and diverging density

    Get PDF
    The ferroelectric nematic phase (NF) is a recently discovered phase of matter in which the orientational order of the conventional nematic liquid crystal state is augmented with polar order. Atomistic simulations suggest that the polar NF¬ phase would be denser than conventional nematics owing to contributions from polar order. Using an oscillating U-tube densitometer, we obtain detailed temperature-dependent density values for a selection of conventional liquid crystals with excellent agreement with earlier reports. Having demonstrated the validity of our method, we then record density as a function of temperature for M5, a novel room-temperature ferroelectric nematic material. We present the first experimental density data for a NF ¬material as well as density data for a nematic that has not previously been reported. We find that the room-temperature NF material shows a large (>1.3 g/cm^3) density at all temperatures studied, notably including phases without polar order. An increase in density at phase transitions is observed. The magnitude of the increase for the intermediate-to-ferroelectric nematic (NX-NF) transition is an order of magnitude smaller than the isotropic-nematic (I-N) transition. We then probe potential consequences that may result from an elevated density through measurement of the refractive indices (n_o and n_e). The n_avg of M5 is compared with 5CB and polar smectic liquid crystals. We observe how the highly polar nature of the system counteracts the effects of an increase in density. With knowledge of experimental density, we are able to derive an approximation that yields the polar order parameter, 〈P1〉, from polarisation measurements. Present results may be typical of ferroelectric nematic materials, potentially guiding material development, and is especially relevant for informing ongoing studies into this emerging class of materials

    Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length

    Get PDF
    Auxetics are materials displaying a negative Poisson’s ratio, i.e., getting thicker in one or both transverse axes when subject to strain. In 2018, liquid crystal elastomers (LCEs) displaying auxetic behaviour, achieved via a biaxial reorientation, were first reported. Studies have since focused on determining the physics underpinning the auxetic response, with investigations into structure–property relationships within these systems so far overlooked. Herein, we report the first structure–property relationships in auxetic LCEs, examining the effect of changes to the length of the spacer chain. We demonstrate that for LCEs with between six and four carbons in the spacer, an auxetic response is observed, with the threshold strain required to achieve this response varying from 56% (six carbon spacers) to 81% (four carbon spacers). We also demonstrate that Poisson’s ratios as low as −1.3 can be achieved. Further, we report that the LCEs display smectic phases with spacers of seven or more carbons; the resulting internal constraints cause low strains at failure, preventing an auxetic response. We also investigate the dependence of the auxetic threshold on the dynamics of the samples, finding that when accounting for the glass transition temperature of the LCEs, the auxetic thresholds converge around 56%, regardless of spacer length

    Unusual electric-field-induced transformations in the dark conglomerate phase of a bent-core liquid crystal

    Get PDF
    Unusual behaviour of the dark conglomerate (DC) phase seen in an oxadiazole-based achiral bent-core liquid crystal, which has not previously been reported for the DC phase of other liquid crystals, is described. Under polarising optical microscopy, we see no domains of opposite handedness in the ground state of the DC phase. However, it shows unusual transformations when an electric field is applied to the system. On increasing the electric field, at first the domains of opposite handedness become visible and then they grow in size and slowly the sample transforms to a monochiral or single-handed form which is followed by a nonchiral state at very high fields. The threshold electric fields required to achieve these changes are temperature dependent and the transformations are seen irrespective of the frequency of the applied electric field (100 Hz to 5 kHz), type of the waveform (sine, square and triangular) and the thickness (1.5 μm to 15 μm) or the geometry (planar and twisted) of the device used. Further, there is no field-induced high birefringence texture observed even though sufficiently large electric field (~22 V/μm) has been applied across the devices. The nature of the behaviour is investigated by various techniques such as optical microscopy, conoscopy, circular dichroic and Raman spectroscopies, electro-optics and dielectric spectroscopy. The possible physical phenomena behind these changes are discussed in detail

    Spontaneous Symmetry Breaking in Polar Fluids

    Get PDF
    Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the SmCHP and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and SmCHP phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter

    A double-layer light shutter consisting of polymer dispersed liquid crystal and azo dye/quantum dot

    No full text
    We have developed a double-layer liquid crystal light shutter and investigated its temperature dependent morphological, electro-optical, and dielectric properties. The optical layers of the shutter are in direct contact, reducing optical losses. The shutter comprises a polymer dispersed liquid crystal film adjacent to an azo dye methyl red and CdSeS/ZnS quantum dot doped cholesteric liquid crystal layer. This novel double-layer light shutter device is switchable between opaque and transparent states at room temperature, and it exhibits low threshold and saturation voltages. Both the threshold (Vth) and saturation (Vsat) voltages are found to decrease with increasing temperature. The electrical characteristics of the shutter, namely the real part of dielectric constant (ε′) and the ac conductivity (σac) also increase with temperature in the low frequency region. Our results show that this double-layer light shutter has interesting potential for simple electro-optical devices and smart window applications
    corecore