10 research outputs found

    Teachers\u27 Conceptions of Mathematics and Intelligent Tutoring System Use

    Get PDF
    The purpose of this mixed-methods study was to investigate the relationship between teachers’ conceptions of mathematics and their use of intelligent tutoring systems for mathematics instruction. Intelligent tutoring systems are adaptive computer programs which administer mathematics instruction to students based on their cognitive state. A conception is a mixture of beliefs and knowledge. The participants in this study were 93 junior high school mathematics teachers from three school districts in the Midwest. Data were gathered using a two-part online survey. The first part of the survey contained questions about their use of intelligent tutoring systems, graphing calculators, Desmos and dynamic geometry software. The second part of the survey contained Likert questions from the teachers’ version of the Conceptions of Mathematics Inventory. Desmos is a website providing interactive classroom activities and a user-friendly graphing calculator. Dynamic geometry software is a class of interactive geometry programs. The quantitative analysis revealed no statistically significant interactions between teachers’ conception scores and intelligent tutoring system use, or between teachers’ conception scores and how intelligent tutoring systems were used. There were statistically significant interactions between teachers’ conception scores and their use of graphing calculators, Desmos, and dynamic geometry software. The qualitative analysis revealed that teachers used intelligent tutoring systems for differentiation. Teachers used graphing calculators, Desmos, and dynamic geometry software for visual, computational, and exploratory purposes. Teachers exclusively using intelligent tutoring systems to incorporate technology should also incorporate technology which promotes student exploration

    Highly Volcanic Exoplanets, Lava Worlds, and Magma Ocean Worlds:An Emerging Class of Dynamic Exoplanets of Significant Scientific Priority

    Get PDF
    Highly volcanic exoplanets, which can be variously characterized as 'lava worlds', 'magma ocean worlds', or 'super-Ios' are high priority targets for investigation. The term 'lava world' may refer to any planet with extensive surface lava lakes, while the term 'magma ocean world' refers to planets with global or hemispherical magma oceans at their surface. 'Highly volcanic planets', including super-Ios, may simply have large, or large numbers of, active explosive or extrusive volcanoes of any form. They are plausibly highly diverse, with magmatic processes across a wide range of compositions, temperatures, activity rates, volcanic eruption styles, and background gravitational force magnitudes. Worlds in all these classes are likely to be the most characterizable rocky exoplanets in the near future due to observational advantages that stem from their preferential occurrence in short orbital periods and their bright day-side flux in the infrared. Transit techniques should enable a level of characterization of these worlds analogous to hot Jupiters. Understanding processes on highly volcanic worlds is critical to interpret imminent observations. The physical states of these worlds are likely to inform not just geodynamic processes, but also planet formation, and phenomena crucial to habitability. Volcanic and magmatic activity uniquely allows chemical investigation of otherwise spectroscopically inaccessible interior compositions. These worlds will be vital to assess the degree to which planetary interior element abundances compare to their stellar hosts, and may also offer pathways to study both the very young Earth, and the very early form of many silicate planets where magma oceans and surface lava lakes are expected to be more prevalent. We suggest that highly volcanic worlds may become second only to habitable worlds in terms of both scientific and public long-term interest.Comment: A white paper submitted in response to the National Academy of Sciences 2018 Exoplanet Science Strategy solicitation, from the NASA Sellers Exoplanet Environments Collaboration (SEEC) of the Goddard Space Flight Center. 6 pages, 0 figure

    Evolution Education is a Complex Landscape

    No full text
    Researchers in various contexts have long struggled with an apparent disconnect between an individual’s level of understanding of biological evolution and their acceptance of it as an explanation for the history and diversity of life. Here, we discuss the main factors associated with acceptance of evolution and chart a path forward for evolution education research

    The American Dual Economy: Race, Globalization, and the Politics of Exclusion

    No full text

    Methods for reactive oxygen species (ROS) detection in aqueous environments

    No full text
    This review summarizes direct and indirect analytical methods for the detection and quantification of the reactive oxygen species (ROS): 1O2, O2·−/HOO·, H2O2, HO·, and CO3·− in aqueous solution. Each section briefly describes the chemical properties of a specific ROS followed by a table (organized alphabetically by detection method, i.e., absorbance, chemiluminescence, etc.) summarizing the nature of the observable (associated analytical signal) for each method, limit of detection, application notes, and reaction of the probe molecule with the particular ROS
    corecore