113 research outputs found

    Group Theoretical Derivation of Consistent Free Particle Theories

    Get PDF
    AbstractThe difficulties of relativistic particle theories formulated by means of canonical quantization, such as those of Klein–Gordon and Dirac, ultimately led theoretical physicists to turn to quantum field theory to model elementary particle physics. In order to overcome these difficulties, the theories of the present approach are developed deductively from the physical principles that specify the system, without making use of canonical quantization. For a free particle these starting assumptions are invariance of the theory and covariance of position with respect to Poincaré transformations. In pursuing the approach, the effectiveness of group theoretical methods is exploited. The coherent development of our program has shown that robust classes of representations of the Poincaré group, discarded by the known particle theories, can in fact be taken as bases for perfectly consistent theories. For massive spin zero particles, six inequivalent theories have been determined, two of which do not correspond to any of the current ones; all of these theories overcome the difficulties of Klein–Gordon one. The present lack of the explicit transformation properties of position with respect to boosts prevents the complete determination of non zero spin particle theories. In the past a particular form of these transformation properties was adopted by Jordan and Mukunda. We check its consistency within the present approach and find that for spin 12\frac{1}{2} 1 2 particles there is only one consistent theory, which is unitarily related to Dirac's; yet, once again, it requires classes of irreducible representations previously discarded

    Decay-less kink oscillations in coronal loops

    Get PDF
    Context: Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force

    3D reconstruction of coronal loops by the principal component analysis

    Get PDF
    Knowing the three dimensional structure of plasma filaments in the uppermost part of the solar atmosphere, known as coronal loops, and especially their length, is an important parameter in the wave-based diagnostics of this part of the Sun. The combination of observations of the Sun from different points of observations in space, thanks to the most recent missions, including the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory (STEREO), allows us to infer information about the geometrical shape of coronal loops in 3D space. Here, we propose a new method to reconstruct the loop shape starting from stereoscopically determined 3D points, which sample the loop length, by principal component analysis. This method is shown to retrieve in an easy way the main parameters that define the loop, e.g., the minor and major axes, the loop plane, the azimuthal and inclination angles, for the special case of a coplanar loop

    Transverse oscillations and stability of prominences in a magnetic field dip

    Get PDF
    Aims. An analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised environment with a magnetic field dip, accounting for the mirror current effect, is developed. Methods. The model is based upon the interaction of line currents through the Lorentz force. Within this concept the prominence is treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources. Results. Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between the photospheric sources
    • …
    corecore