448 research outputs found
Improved User Tracking in 5G Millimeter Wave Mobile Networks via Refinement Operations
The millimeter wave (mmWave) frequencies offer the availability of huge
bandwidths to provide unprecedented data rates to next-generation cellular
mobile terminals. However, directional mmWave links are highly susceptible to
rapid channel variations and suffer from severe isotropic pathloss. To face
these impairments, this paper addresses the issue of tracking the channel
quality of a moving user, an essential procedure for rate prediction, efficient
handover and periodic monitoring and adaptation of the user's transmission
configuration. The performance of an innovative tracking scheme, in which
periodic refinements of the optimal steering direction are alternated to
sparser refresh events, are analyzed in terms of both achievable data rate and
energy consumption, and compared to those of a state-of-the-art approach. We
aim at understanding in which circumstances the proposed scheme is a valid
option to provide a robust and efficient mobility management solution. We show
that our procedure is particularly well suited to highly variant and unstable
mmWave environments.Comment: Accepted for publication to the 16th IEEE Annual Mediterranean Ad Hoc
Networking Workshop (MED-HOC-NET), Jun. 201
Initial Access in 5G mm-Wave Cellular Networks
The massive amounts of bandwidth available at millimeter-wave frequencies
(roughly above 10 GHz) have the potential to greatly increase the capacity of
fifth generation cellular wireless systems. However, to overcome the high
isotropic pathloss experienced at these frequencies, high directionality will
be required at both the base station and the mobile user equipment to establish
sufficient link budget in wide area networks. This reliance on directionality
has important implications for control layer procedures. Initial access in
particular can be significantly delayed due to the need for the base station
and the user to find the proper alignment for directional transmission and
reception. This paper provides a survey of several recently proposed techniques
for this purpose. A coverage and delay analysis is performed to compare various
techniques including exhaustive and iterative search, and Context Information
based algorithms. We show that the best strategy depends on the target SNR
regime, and provide guidelines to characterize the optimal choice as a function
of the system parameters.Comment: 6 pages, 3 figures, 3 tables, 15 references, submitted to IEEE COMMAG
201
An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications
The millimeter wave (mmWave) frequencies offer the potential of orders of
magnitude increases in capacity for next-generation cellular systems. However,
links in mmWave networks are susceptible to blockage and may suffer from rapid
variations in quality. Connectivity to multiple cells - at mmWave and/or
traditional frequencies - is considered essential for robust communication. One
of the challenges in supporting multi-connectivity in mmWaves is the
requirement for the network to track the direction of each link in addition to
its power and timing. To address this challenge, we implement a novel uplink
measurement system that, with the joint help of a local coordinator operating
in the legacy band, guarantees continuous monitoring of the channel propagation
conditions and allows for the design of efficient control plane applications,
including handover, beam tracking and initial access. We show that an
uplink-based multi-connectivity approach enables less consuming, better
performing, faster and more stable cell selection and scheduling decisions with
respect to a traditional downlink-based standalone scheme. Moreover, we argue
that the presented framework guarantees (i) efficient tracking of the user in
the presence of the channel dynamics expected at mmWaves, and (ii) fast
reaction to situations in which the primary propagation path is blocked or not
available.Comment: Submitted for publication in IEEE Transactions on Wireless
Communications (TWC
An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks
The automotive industry is rapidly evolving towards connected and autonomous
vehicles, whose ever more stringent data traffic requirements might exceed the
capacity of traditional technologies for vehicular networks. In this scenario,
densely deploying millimeter wave (mmWave) base stations is a promising
approach to provide very high transmission speeds to the vehicles. However,
mmWave signals suffer from high path and penetration losses which might render
the communication unreliable and discontinuous. Coexistence between mmWave and
Long Term Evolution (LTE) communication systems has therefore been considered
to guarantee increased capacity and robustness through heterogeneous
networking. Following this rationale, we face the challenge of designing fair
and efficient attachment policies in heterogeneous vehicular networks.
Traditional methods based on received signal quality criteria lack
consideration of the vehicle's individual requirements and traffic demands, and
lead to suboptimal resource allocation across the network. In this paper we
propose a Quality-of-Service (QoS) aware attachment scheme which biases the
cell selection as a function of the vehicular service requirements, preventing
the overload of transmission links. Our simulations demonstrate that the
proposed strategy significantly improves the percentage of vehicles satisfying
application requirements and delivers efficient and fair association compared
to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent
Vehicles Symposiu
Symmetric Synchronous Collaborative Navigation
Synchronous collaborative navigation is a form of social navigation where users virtually share a web browser. In this paper, we present a symmetric, proxy-based architecture where each user can take the lead and guide others in visiting web sites, without the need for a special browser or other software. We show how we have applied this scheme to a problem-solving-oriented e-learning system
Photo-responsive graphene and carbon nanotubes to control and tackle biological systems
Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field
Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks
The millimeter wave (mmWave) bands offer the possibility of orders of
magnitude greater throughput for fifth generation (5G) cellular systems.
However, since mmWave signals are highly susceptible to blockage, channel
quality on any one mmWave link can be extremely intermittent. This paper
implements a novel dual connectivity protocol that enables mobile user
equipment (UE) devices to maintain physical layer connections to 4G and 5G
cells simultaneously. A novel uplink control signaling system combined with a
local coordinator enables rapid path switching in the event of failures on any
one link. This paper provides the first comprehensive end-to-end evaluation of
handover mechanisms in mmWave cellular systems. The simulation framework
includes detailed measurement-based channel models to realistically capture
spatial dynamics of blocking events, as well as the full details of MAC, RLC
and transport protocols. Compared to conventional handover mechanisms, the
study reveals significant benefits of the proposed method under several
metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue
on Millimeter Wave Communications for Future Mobile Network
- …