
UNIVERSITY
OF TRENTO
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

SYMMETRIC SYNCHRONOUS COLLABORATIVE NAVIGATION

Luca Gerosa, Alessandra Giordani, Marco Ronchetti, Amy Soller, and
Ron Stevens
 

May 2004

Technical Report # DIT-04-033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


.



SYMMETRIC SYNCHRONOUS COLLABORATIVE 
NAVIGATION 

Luca Gerosa, Alessandra Giordani, Marco Ronchetti  
Dipartimento di Informatica e Telecomunicazioni, Università di Trento  

Via Sommarive 14, 38050 Povo di Trento, Italy  
{lgerosa,agiordani,marco.ronchetti}@dit.unitn.it  

 
Amy Soller  

Irst-ITC  
Via Sommarive 18, 38050 Povo di Trento, Italy  

soller@itc.it  
 

Ron Stevens  
UCLA/IMMEX Lab, 

560ı W. Slauson Avenue #255, Culver City, CA, 90230 
immex_ron@hotmail.com 

ABSTRACT 

Synchronous collaborative navigation is a form of social navigation where users virtually share a web browser. In this 
paper, we present a symmetric, proxy-based architecture where each user can take the lead and guide others in visiting 
web sites, without the need for a special browser or other software. We show how we have applied this scheme to a 
problem-solving-oriented e-learning system. 

KEYWORDS 

Collaborative navigation, social navigation, e-learning 

1. INTRODUCTION 

Computers can be used to support both individual and collective experiences. Sometimes, even the same 
task can be performed individually or cooperatively. For instance, using a word processor to write a letter is 
individual task, while using it to write a paper with other authors, and making use of tools like versioning and 
annotations, is certainly a collaborative action. Even computer games can have individual and networked 
versions. For example, Doom can be used as a solitary game, or as a social one when playing over the 
network with friends, cooperating to defeat the (virtual) enemy. Solitary games can also have a social 
component, e.g. when trying to outperform other users. Simply keeping track of the high scores introduces a 
(indirect) social component in an otherwise individual game. We therefore have a whole spectrum of 
possibilities, where activities can be classified as individual, indirect social, and social. Moreover, social 
activities can be asynchronous or synchronous. They can also be symmetric or asymmetric: in the first case 
all the users play the same role (or at least have equal opportunity to do so), while in the second, a leader 
controls the system. These possibilities are determined by the natural affordances of the technology – those 
characteristics of the technology that define the ways in which users can carry out activities and interact with 
other users in a given context, and the ways in which the software mediates these activities (Jermann, et al., 
2004). In this introduction, we take a look at a few different examples. 

Navigating a hypertext or the web appears at first glance to be an individual experience, not unlike 
reading a book. However, even web navigation can be seen as a social activity (Erickson 1996, Dieberger 
1997). For instance, indirect social navigation is possible in an on-line grocery store if people visiting the site 
are given indications about what other people have bought (Munro et al. 1999). Amazon.com actively uses 



this concept for suggesting books to buy according to the behavior of other users having similar interests. 
Along this idea, recommendation systems have been employed and studied by many authors in the last few 
years. Recommendation can be explicit (like when users are allowed to express their opinion, for instance by 
voting on a page or writing a comment) or implicit (when the recommendation is obtained by analyzing 
indicators of the visitor’s behavior, such as the choices taken by the users, or the time spent on a page and the 
followed links). 

Direct social (and interactive) navigation occurs when the navigators can become active authors, like in 
the case of Blogs or Wiki’s. In this case the navigator can actively modify portions of a Web site, mirroring 
the kind of interaction experienced during the cooperative activity of writing of a paper. A Wiki 
(WikiWikiWeb, a concept invented by Cunningham in 1995) enables documents to be authored collectively 
in a simple markup language using a web browser (Leuf and Cunningham 2001). Similarly, a weblog, also 
known as a blog, is a website which contains periodic, reverse chronologically ordered posts on a common 
webpage (see e.g. Stauffer 2002). Individual posts either share a particular theme, or a single or small group 
of authors. Because of their ability to support the notion of direct social navigation, Blogs and Wikis are 
growing in popularity. Interactions through blogs and wikis are in most cases asynchronous. 

A case in which interactions among navigators are synchronous has been proposed and implemented in 
the EDUCO system (Nokelainen et al, 2002). EDUCO appears to the users as a visual collection of web sites, 
where the users can navigate the documents and see when other users are navigating those same documents. 
Other users can be contacted through a chat by clicking the dots representing users in EDUCO view. 
Furthermore, users are able to set “alarms” which are triggered when someone (e.g. anyone, or a particular 
person) arrives to the systems or to a certain document. (Hoppe and Ploezner 1999).  The interactivity here is 
given by the ability to observe, in real time, the population of visitors of the environment, and to contact them 
explicitly. The main goal of the system was to let the user break the feeling of “loneliness” when navigating. 

An even stronger form of synchronous interaction during navigation is to co-navigate, i.e. to allow 
multiple users to share a navigation experience by synchronizing their browsers. Such idea has been explored 
in the early days of the web. Yeh et al. suggested in 1996 that a web client (in master mode) could take 
control of other web clients (in consentient slave mode) to guide them through an internet tour (synchronous 
navigation). They argued that such activity could be valuable in an e-learning environment, where a tutor 
might show domain material or learning artifacts to pupils. In the following years, similar systems have been 
proposed (we discuss these later). 

In this paper, we realize the idea of co-navigation in not only a synchronous, but also symmetric setting. 
We describe the prototype we implemented, in which users can join a group, and navigate in a collaborative, 
synchronous and symmetric way. This means that all users of a collaborative learning group view the same 
screen on different browser, and the actions taken by any group member has a direct effect on the browsers of 
all the other users in the group. In our prototype, we also provide tools such as a textual chat, and a system to 
obtain interface control. The aim of this research was to enhance individuals’ learning experiences in an 
online, initially single-user, problem-based learning environment by providing them the opportunity to 
collaborate synchronously while navigating together. In our environment, the students typically solve 
problems by exchanging ideas while exploring a simulated mini-world through co-navigation. In section 2 
we describe the environment and our goals in more detail. In section 3 we present the overall architecture. In 
section 4 we discuss related work, and then draw our conclusions. 

2. MOTIVATION OF THE WORK 

Our work was motivated by the desire to extend the IMMEX™ system to support collaboration among 
students. The IMMEX™ (Interactive Multi-Media EXercises: www.immex.ucla.edu) software, which was 
developed at the University of California, Los Angeles, has been used in science classes across middle and 
high schools, universities, and medical schools in the U.S. over the past 12 years, and has logged over 
140,000 student problem solving performances (Stevens and Palacio-Cayetano, 2003). Through the IMMEX 
web-based interface, students learn how to elaborate hypotheses and analyze laboratory tests while solving 
real-world problems. The system presents problem sets as scientific case-studies and realistic multimedia 
domain-specific simulations. For instance, in one problem set, students perform physical and chemical 
chemistry tests to determine, as quickly as possible, whether or not some chemicals that spilled during an 



earthquake are dangerous. The system does not allow students to perform an exhaustive exploration of the 
problem space, so that they have to be selective and use scientific inquiry to solve the problem. A rich 
portfolio of over 100 problem sets in various disciplines has been developed, and is now available online. 
Statistics generated by the system has been used to identify the common types of strategies high school 
chemistry students used to solve qualitative chemistry problems (Vendlinski and Stevens, 2002), and we have 
now begun to study how collaboration influences students solving strategies. It was therefore necessary to 
enhance the IMMEX system with collaboration facilities to allow students to cooperatively solve problems. 

Because IMMEX is a web-based system, students do not need to be co-located to learn together, so it was  
necessary to develop tools to support their synchronous, symmetric cooperation through the web. Important 
tools included a chat that allows them to discuss the problem, and their proposed actions, and facilities that 
enable students to cooperatively use the IMMEX system as if they were in front of the same computer. The 
advantage of mediating the students’ interaction through the computer is twofold: this enables remote 
students to work together over the network, adding a layer of cooperation to distance learning, and it also 
allows the system to keep track of the actions and discussions. Such logs can be analyzed, for example, to 
investigate how the collaboration influences the student’s learning styles.  

The concept of synchronous symmetric co-navigation satisfies these goals. We therefore designed and 
implemented an architecture based on an HTTP proxy, Java and Javascript to allow the co-navigation on a 
peer basis. We do not use the concept of a (static) master and slaves. In our implementation, any user can 
take control of the navigation, and the effect of each action is visible to all other associated users. Our 
architecture is scalable, and can be used both in the context of the IMMEX system, and, with minor 
adaptations, to support other environments where co-navigation can be useful. 

3. THE ARCHITECTURE 

In order to add extra functions on top of the web paradigm there are three possibilities: to enhance the server, 
to modify the client, or to interpose an additional actor (typically a proxy).  
Enhancing the server is, in general, the simplest solution. Several technologies are available to achieve the 
goal: CGI programs, scripting languages (like ASP, PHP etc.) and Java Servlets (or their dual: Java Server 
Pages). Such solution can be applied whenever the desired functionality fully depends on a single Web 
server, and when one has full control of the web application that has to be modified. 
Some degree of customization of the behavior of a client (i.e. of the web browser) is possible by using client-
side scripting languages (Javascript being the main player in this field) or by using applets. Such approaches, 
however, require modification of the original pages coming from the server, so that ultimately,  one does 
have to act on the server side. Modifying the server functionality or the content it delivers may not be an 
acceptable solution in many cases. For instance, one might not have access to the server and its content, or 
one might rather not touch it.  
More radical browser behavior modifications can be obtained by building an ad-hoc browser that 
incorporates the desired functionalities. The modified client can then talk to the standard “content providers” 
(i.e. normal web servers) via HTTP, and to a special purpose server providing the needed functionality using 
an arbitrary protocol. Such an approach is viable, e.g. in Java some APIs provide the basic building blocks 
(like the class JEditorPane) to build a rudimentary basic browser with only a few lines of code. The main 
drawbacks are, however, that building a full fledged browser is a gigantic task, and moreover having to 
utilize a special browser in some context, and a standard browser in others, can be very inconvenient for the 
user. 
The last possibility is to encapsulate the desired business logic in an active element interposed between client 
and server. The browser must address its requests to the middle layer, that in turn, pushes them to the server, 
gets the response, and before delivering it to the browser, performs whatever modifications are needed to add 
the desired functionalities. The simplest example of such an architecture are the widely employed proxy 
servers, where the middle layer stores a local copy of any page that is requested so that the successive 
requests (of the same or of other users) can be fulfilled quickly without downloading the content again from 
the server. From now on we call “proxies” such middle layers, although they can do much more than just 
caching pages. For instance, a proxy can actively modify the served pages. Such modifications may include, 
for instance, URL rewriting, content filtering, triggering of events, and addition of Javascript code to allow a 



limited control of the browser behavior. Such schemas can be added to implement a number of new 
functionalities (e.g. to allow adding personal annotations on a HTML page, see Ronchetti 2002). Moreover, it 
is possible to employ a cascade of proxies, each of them providing a specialized service. In some cases a 
proxy adds a (typically small) delay to the delivery of an HTTP request and response, while in others (like in 
the case of caching) they can actually improve overall performance. 
 
In our case we wanted our general architecture to scale beyond the IMMEX environment. Additionally, we 
needed the IMMEX server and its content to be unaffected by the collaborative features, and to continue to 
operate for individual users in the standard way. Both of these requirements ruled out the first of the above 
discussed options. The option of using a custom browser was never taken into consideration for the reasons 
already mentioned. The obvious choice was therefore a proxy-based solution, augmented by browser control, 
embedded in applets and Javascript that are dynamically added from the proxy to the pages obtained from the 
web server. 
 

 
Figure 1. The IMMEX Collaborative user interface 

 
In order to describe our architecture, it is useful to follow a use-case scenario. Therefore we shall now 
describe step-by-step what the user perceives, and the architectural details that make each action possible. 
The first scenario is group formation. Because co-navigation means dealing with more than one actor, we 
define a group as two or more actors that intend to co-navigate. A user begins forming a group by requesting 
a login web page from the proxy (that in this case acts as a web server). Other users may join this group using 
the same page. We consider several different logics for group formation: either the composition of a group is 
predefined, or groups can be dynamically formed “on the fly”. Also, the process of group formation can be 
considered complete when the group size has reached a given dimension, when all the predefined users have 
joined, or when the user who started the group decides that the process is over. At present we use groups 
composed of two persons, but the reasons for such limitation are given by the goals of the collaboration 
experiments we intend to perform and not by technical reasons. During the group formation, the proxy acts as 
a normal web server, interacting with a database where it logs the group information. The proxy completes 
the user login procedure by delivering a page with frames: two of the frames contain applets. The first applet 
implements a textual chat. The chat server is forked on the proxy. From this point on, and for the whole time 
of the co-navigation, users can interact using the chat (see Figure 1). A second applet, that we will call the 
control applet, is not visible to the user. It has the important duty of controlling the browser. It opens a socket 
connection to the proxy, on which a second daemon is forked. This daemon is the core of the co-browsing 



process – we call it the control engine. Note that this socket connection is open on port 80, so that the system 
can also work through firewalls. 
 
Once the group formation is complete, the proxy impersonates a browser, and starts a session with IMMEX 
(in the general case, it accesses the web page that the first user of the group defines as the navigation starting 
point.). From the server’s point of view, the proxy is just a generic client. The server delivers a page to the 
proxy as the HTTP response. When the proxy receives the page, it sends a message to each of the group 
member’s control applets. The message contains the (local) reference for the page. The control applets talk to 
the browser using their AppletContext class (a standard Java class), requesting that the browser load the 
referenced page in the main frame. The browser then contacts the proxy and requests the page, which the 
proxy delivers. At this point all browsers in the group will show the same initial page.  
 
Figure 1 shows what the user sees at the end of this process: the largest frame contains the page that was 
originally obtained from the Web server (in the figure the “HAZMAT” chemistry problem). The gray frame 
on the left contains the chat. The static frame in the lower left-hand corner with the title, “IMMEX 
Collaborative” hides the control applet. The frame along the bottom of the window showing a mouse 
contains another applet, “the mouse applet”, which enables users to manage the synchronization of the 
application (described in more detail later). 
 
The second scenario takes off from where the first scenario ends. In this scenario, all the users in the group 
see the same page, and can interact through the chat. At this point a user might want to navigate by following 
one of the links that are present on the page. When s/he clicks, a new request is sent to the server from which 
the page originated. For the browser, this server is the proxy (there also exists a caveat regarding absolute 
links, which we discuss later). The proxy gets the request, and can process it similarly to the case of the first 
page: it forwards the request to the web server and gets in return a page. This time, however, not all the group 
members’ browsers are in the same state. One of them (the one which originated the request) is waiting for an 
HTTP response, while the others are idle. The proxy then delivers the page to the waiting browser, and 
contacts the control applets of the remaining browsers to solicit a request for the fresh page to be delivered. 
At this point all the browsers are once more in the same state, and the scenario repeats. 
 
We experienced a potential problem stemming from absolute links, in that when the browser saw an absolute 
link, it bypassed the proxy, and directly accessed the specified server. Such problems can be avoided in two 
ways. The first is to ask the user to modify the browser preferences; every browser allows the address of the 
Internet proxy to be defined. If that address points to the proxy, then all requests (including the absolute 
links) can be intercepted. The other possibility is to let the proxy parse all HTML pages that it serves, and 
have it re-write all the URLs. Although this is possible, it introduces a small additional delay in serving the 
pages. In the case of IMMEX we have the guarantee that all the needed links are relative, so we can avoid 
dealing explicitly with the problem. For the more general case, we apply URL-rewriting because it is a safer 
approach, since it does not rely on user’s preferences.  
 
Until now, we have deliberately ignored a typical problem of parallel code execution: concurrency control. 
What happens if a second user clicks on a link right after the first user, before the serving of the new page is 
complete? Clearly, such events must be avoided. Other approaches to co-navigation (see the discussion in 
section 4) use a master-slave model, meaning that they assign different roles to different users. In particular, 
there is one (and only one) privileged user who holds the bar, while the others just “look”. Because we 
wanted to provide students with a synchronous, symmetric environment, approaches like this were 
unsatisfactory. We solved the problem by using the mouse applet and introducing the concept of a token. 
Only when a user has a token, his/her clicks are effective. The presence of the token is pictorially shown by 
representing the mouse above the user name in the mouse applet. A user can ask for a token by clicking on 
the mouse: in this case the mouse applet talks to a daemon on the server, and puts the user on a queue. When 
a user gets to the top of the queue, all the mouse applets are informed that the token has been given to the 
user and update their view so that everybody is aware of who is in control at any given time. To prevent the 
user from clicking on links when s/he is not the mouse owner, we use the Javascript onClick function, which 
in our implementation checks the ownership of the token. If the token is not available, the actions do not have 
any effect. 



4. RELATED WORK 

As we mentioned in the introduction, attempts to provide synchronous co-navigation date back to the early 
days of the web. One approach was to build a special browser that provided ad-hoc functionalities, such as 
peer-to-peer interaction, or that provided special views or interacted with dedicated server through a protocol. 
Among such systems are Albatross (Yeh et al. 1996), GroupWeb (Greenberg and Roseman, 1996), Nestor 
(Zeiliger 1998) and Co-Vitesse (Laurillau 1999). Building a special purpose browser, however, has strong 
drawbacks. For example, users may desire to use their own preferred browser, and using different browsers 
for different tasks may be rather unnatural. Also, implementing a browser that can replace a commercial 
browser, providing support for Java, Javascript, and plug-ins of various kinds, can be a daunting task. Such 
an approach should therefore be restricted to ad-hoc tools for demonstration purposes. 

Support for synchronous navigation using a standard browser was illustrated by Cabri et al. (1997), using 
an architecture similar to the one presented here. However, Cabri and colleagues’ work is mostly aimed at 
cache optimization for workgroups. Their application enables members of the workgroup to be aware of each 
other’s activities, hence avoiding duplicate searches. It also facilitates communication directly through the 
browser, and benefits from the typical proxy advantages such as saving time when getting pages already 
retrieved by others. Cabri and colleagues only briefly mention their synchronous navigation, which employs 
a master-slave model.  A symmetric implementation of co-browsing has recently been reported by Esenther 
(2002), but the report is too short to really understand the architecture (based on pure Javascript, and on a 
dedicated server) and the system limitations (among them the fact that it only works on a Microsoft browser): 
it seems however that their proposal is mostly suited in an intranet. 

The work by Aneros et al (2003) contains an interesting discussion of various co-browsing models, 
although their work is concerned with providing a persistent shared unified history object that allows 
cooperative browsing in a broader sense (not as co-navigation). 

5. CONCLUSION 

We presented a symmetric implementation of co-navigation. Users cluster in a group and can collectively 
visit web sites: all their screens are synchronized. A simple concurrency control system allows each of them 
to take the lead of the group at any time. Users can also interact through a chat. No special tool is needed on 
the user’s side: users employ a normal web browser. All the controlling logic is kept on a proxy server, so 
that the navigation is not restricted to specially enabled web servers.  
The idea of co-navigation is not new, but the symmetric role of users coupled with the use of standard 
browser and to the independence on the server makes our approach original. Moreover, in the past the idea of 
co-navigation has been proposed as a technological enhancement of the web paradigm, without a strongly 
motivating application. Often technology-driven proposals that do not clearly identify a precise user need are 
doomed to be unsuccessful. We believe that the context we identified (collaborative problem solving 
environment) provides a context in which co-navigation is really useful. 

ACKNOWLEDGEMENT 

This work is supported by NSF under grant NSF ROLE 0231995. 

REFERENCES 

Aneiros, M., Estivill-Castro, V., Sun C., 2003, Group Unified Histories an Instrument for Productive Unconstrained Co-
Browsing in GROUP’03, November 9–12, 2003, Sanibel Island, Florida, USA. 

Cabri G., Leonardi L., Zambonelli F,. 1999, Supporting Cooperative WWW Browsing: a Proxy-based approach. 
7thEuromicro Workshop on Parallel and Distributed Processing, Madeira, Portugal, pp 138-145 



Dieberger, Andreas, 1997, Supporting Social Navigation on the World-Wide Web, in International Journal of Human 
Computer Studies, Vol. 46, pp 805 – 825 

Erickson, T. (1996). “The World Wide Web as Social Hypertext.” Communications of the ACM 39(1): 15-17. . 
Esenther, A. W., 2002, Instant co-browsing: Lightweight real-time collaborative Web browsing.  In Proc. Of the 11th Int. 

WWW Conference, May 2002, pages 107–114, Honolulu, Hawaii, USA 
Greenberg, S. and Roseman, M. 1996. Groupweb: A WWW browser as real time groupware. In Human Factors in 

Computing Systems, CHI Companion Proc., ACM Press, pp. 271–272.. 
Hoppe, U. & Ploezner, R. 1999. Can Analytic Models Support Learning in Groups? in P. Dillenbourg (Ed.), 

Collaborative-learning: Cognitive and Computational Approaches, pp.147-168.  Elsevier, Oxford, UK. 
Jermann, P., Soller, A., & Lesgold, A. (2004). Computer software support for CSCL. In P. Dillenbourg (Series Ed.) & J. 

W. Strijbos, P. A. Kirschner & R. L. Martens (Vol. Eds.), Computer-supported collaborative learning: Vol 3. What 
we know about CSCL ... and implementing it in higher education, pp. 141-166. Boston, MA: Kluwer Academic 
Publishers 

Laurillau. Y., 1999, Synchronous collaborative navigation on the WWW. In Proc. of CHI Conference 1999, 15–20 May 
1999, Pittsburgh, PA, USA, pp. 107–114 

Leuf B., Cunningham W., 2001, The Wiki Way: Quick collaboration on the Web, Addison-Wesley Longmann  
Munro, A., Höök, K. & Benyon, D. 1999. Footprints in the Snow. in A. Munro, K. Höök & D. Benyon (Eds.), Social 

Navigation of Information Space, pp.1-14. Springer Verlag, London, UK 
Nokelainen, P., Miettinen, M., Tirri, H. 2002,  EDUCO - A Tool for Real Time On-Line Collaboration in Web-Based 

Learning, in Proceedings of the ED-MEDIA 2002 Conference, Denver, USA, pp. 1448-1453 
Ronchetti M., 2002, "Why Web pages annotation tools are not killer applications? A new approach to an old problem". 

Proceedings of the "IADIS International Conference WWW/Internet 2002", Lisboa, Portugal,  pp. 735-738 
Stauffer, T., 2002, Blog On: Building Online Communities with Web Logs, McGraw-Hill Osborne Media 
Stevens, R., & Palacio-Cayetano, J. (2003). Design and Performance Frameworks for Constructing Problem-Solving 

Simulations. Cell Biology Education, Vol. 2, pp. 162–179. 
Vendlinski, T. and Stevens, R. 2002, Assessing Student Problem-Solving Skills With Complex Computer-Based Task. In 

The Journal of Technology, Learning, and Assessment, Vol.1, No 3, pp. 1-21  Available from http://www.jtla.org. 
Yeh, P., Chen, B.,  Lai, M.  and Yuan., S., 1996,  Synchronous Navigation Control for Distance Learning on the Web, 

Computer Networks and ISDN Systems, Volume 28, issues 7–11, p. 1207-1218 
Zeiliger, R. 1998. Supporting constructive navigation of Web space. In Workshop on Personalized and Social Navigation 

in Information Space, K. Hook, D. Benyon, and A. Munro, editors, 16th-17th March, Stockholm, Sweden. 
 




