6,124 research outputs found
Noncommutative Toda Chains, Hankel Quasideterminants And Painlev'e II Equation
We construct solutions of an infinite Toda system and an analogue of the
Painlev'e II equation over noncommutative differential division rings in terms
of quasideterminants of Hankel matrices.Comment: 16 pp; final revised version, will appear in J.Phys. A, minor changes
(typos corrected following the Referee's List, aknowledgements and a new
reference added
Darboux dressing and undressing for the ultradiscrete KdV equation
We solve the direct scattering problem for the ultradiscrete Korteweg de
Vries (udKdV) equation, over for any potential with compact
(finite) support, by explicitly constructing bound state and non-bound state
eigenfunctions. We then show how to reconstruct the potential in the scattering
problem at any time, using an ultradiscrete analogue of a Darboux
transformation. This is achieved by obtaining data uniquely characterising the
soliton content and the `background' from the initial potential by Darboux
transformation.Comment: 41 pages, 5 figures // Full, unabridged version, including two
appendice
Multi-modal information processing for visual workload relief
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority
Bäcklund transformations for noncommutative anti-self-dual Yang-Mills equations
We present Bäcklund transformations for the non-commutative anti-self-dual Yang–Mills equations where the gauge group is G = GL(2) and use it to generate a series of exact solutions from a simple seed solution. The solutions generated by this approach are represented in terms of quasi-determinants and belong to a non-commutative version of the Atiyah–Ward ansatz. In the commutative limit, our results coincide with those by Corrigan, Fairlie, Yates and Goddard
Maximum fidelity retransmission of mirror symmetric qubit states
In this paper we address the problem of optimal reconstruction of a quantum state from the result of a single measurement when the original quantum state is known to be a member of some specified set. A suitable figure of merit for this process is the fidelity, which is the probability that the state we construct on the basis of the measurement result is found by a subsequent test to match the original state. We consider the maximisation of the fidelity for a set of three mirror symmetric qubit states. In contrast to previous examples, we find that the strategy which minimises the probability of erroneously identifying the state does not generally maximise the fidelity
Nucleomorph genomes: much ado about practically nothing
The DNA sequence of one of the smallest eukaryotic genomes has recently been finished - that of the reduced nucleus, or nucleomorph, of an algal endosymbiont that resides within a cryptomonad host cell. Its sequence promises insights into chloroplast acquisition, the constraints on genome size and the basic workings of eukaryotic cells
Performance evaluation of a kinesthetic-tactual display
Simulator studies demonstrated the feasibility of using kinesthetic-tactual (KT) displays for providing collective and cyclic command information, and suggested that KT displays may increase pilot workload capability. A dual-axis laboratory tracking task suggested that beyond reduction in visual scanning, there may be additional sensory or cognitive benefits to the use of multiple sensory modalities. Single-axis laboratory tracking tasks revealed performance with a quickened KT display to be equivalent to performance with a quickened visual display for a low frequency sum-of-sinewaves input. In contrast, an unquickened KT display was inferior to an unquickened visual display. Full scale simulator studies and/or inflight testing are recommended to determine the generality of these results
Evaluation of kinesthetic-tactual displays using a critical tracking task
The study sought to investigate the feasibility of applying the critical tracking task paradigm to the evaluation of kinesthetic-tactual displays. Four subjects attempted to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. Display aiding was introduced in both modalities in the form of velocity quickening. Visual tracking performance was better than tactual tracking, and velocity aiding improved the critical tracking scores for visual and tactual tracking about equally. The results suggest that the critical task methodology holds considerable promise for evaluating kinesthetic-tactual displays
Quasideterminant solutions of a non-Abelian Hirota-Miwa equation
A non-Abelian version of the Hirota-Miwa equation is considered. In an
earlier paper [Nimmo (2006) J. Phys. A: Math. Gen. \textbf{39}, 5053-5065] it
was shown how solutions expressed as quasideterminants could be constructed for
this system by means of Darboux transformations. In this paper we discuss these
solutions from a different perspective and show that the solutions are
quasi-Pl\"{u}cker coordinates and that the non-Abelian Hirota-Miwa equation may
be written as a quasi-Pl\"{u}cker relation. The special case of the matrix
Hirota-Miwa equation is also considered using a more traditional, bilinear
approach and the techniques are compared
Entanglement and Collective Quantum Operations
We show how shared entanglement, together with classical communication and
local quantum operations, can be used to perform an arbitrary collective
quantum operation upon N spatially-separated qubits. A simple
teleportation-based protocol for achieving this, which requires 2(N-1) ebits of
shared, bipartite entanglement and 4(N-1) classical bits, is proposed. In terms
of the total required entanglement, this protocol is shown to be optimal for
even N in both the asymptotic limit and for `one-shot' applications
- …