9,785 research outputs found

    Cooperative heterogeneous facilitation: multiple glassy states and glass-glass transition

    Full text link
    The formal structure of glass singularities in the mode-coupling theory (MCT) of supercooled liquids dynamics is closely related to that appearing in the analysis of heterogeneous bootstrap percolation on Bethe lattices, random graphs and complex networks. Starting from this observation one can build up microscopic on lattice realizations of schematic MCT based on cooperative facilitated spin mixtures. I discuss a microscopic implementation of the F13 schematic model including multiple glassy states and the glass-glass transition. Results suggest that our approach is flexible enough to bridge alternative theoretical descriptions of glassy matter based on the notions of quenched disorder and dynamic facilitation.Comment: 4 pages, 2 figure

    Overcoming the su(2^n) sufficient condition for the coherent control of n-qubit systems

    Get PDF
    We study quantum systems with even numbers N of levels that are completely state-controlled by unitary transformations generated by Lie algebras isomorphic to sp(N) of dimension N(N+1)/2. These Lie algebras are smaller than the respective su(N) with dimension N^2-1. We show that this reduction constrains the Hamiltonian to have symmetric energy levels. An example of such a system is an n-qubit system. Using a geometric representation for the quantum wave function of a finite system, we present an explicit example that shows a two-qubit system can be controlled by the elements of the Lie algebra sp(4) (isomorphic to spin(5) and so(5)) with dimension ten rather than su(4) with dimension fifteen. These results enable one to envision more efficient algorithms for the design of fields for quantum-state engineering, and they provide more insight into the fundamental structure of quantum control.Comment: 13 pp., 2 figure

    Characterization of the 15-5 Stainless Steel Electric Discharge Machining Recast Layer

    Get PDF
    Electric discharge machining (EDM) is a non-conventional machining process that is used for tough, hard materials or materials that require no tool force. Wire EDM produces a recast layer and heat-affected zone as a result of rapid melting and quenching at the surface of the cut. A secondary machining operation has been required to remove this layer. Previous estimates of the depth of the recast layer are likely too conservative due to improvements in the technology; therefore, the goal of this study is to characterize and more accurately investigate the size of the layer. Two EDM machine parameters, voltage and pulse on-time, were varied for the machining of 15-5 PH stainless steel. Three levels of each factor were investigated: recommended machine settings, -25%, and -50%. Average recast layer thickness was evaluated using a scanning electron microscope (SEM). Microhardness testing was also performed on ground, polished, and etched samples. Compared to previous studies and industry specifications, the recast layer was significantly smaller or not observed at all. SEM imaging generally indicated an oxide layer with porosity and microcracking near the surface. Microhardness results showed no difference between the surface and base material at maximum voltage, but significant difference between recast layer and base material for all lower voltages. However, a secondary machining operation is still recommended to remove any recast or oxide layers, but less material must be removed than prior industry estimates

    Generalized coherent states are unique Bell states of quantum systems with Lie group symmetries

    Full text link
    We consider quantum systems, whose dynamical symmetry groups are semisimple Lie groups, which can be split or decay into two subsystems of the same symmetry. We prove that the only states of such a system that factorize upon splitting are the generalized coherent states. Since Bell's inequality is never violated by the direct product state, when the system prepared in the generalized coherent state is split, no quantum correlations are created. Therefore, the generalized coherent states are the unique Bell states, i.e., the pure quantum states preserving the fundamental classical property of satisfying Bell's inequality upon splitting.Comment: 4 pages, REVTeX, amssymb style. More information on http://www.technion.ac.il/~brif/science.htm

    Searching for Machos (and other Dark Matter Candidates) in a Simulated Galaxy

    Get PDF
    We conduct gravitational microlensing experiments in a galaxy taken from a cosmological N-body simulation. Hypothetical observers measure the optical depth and event rate toward hypothetical LMCs and compare their results with model predictions. Since we control the accuracy and sophistication of the model, we can determine how good it has to be for statistical errors to dominate over systematic ones. Several thousand independent microlensing experiments are performed. When the ``best-fit'' triaxial model for the mass distribution of the halo is used, the agreement between the measured and predicted optical depths is quite good: by and large the discrepancies are consistent with statistical fluctuations. If, on the other hand, a spherical model is used, systematic errors dominate. Even with our ``best-fit'' model, there are a few rare experiments where the deviation between the measured and predicted optical depths cannot be understood in terms of statistical fluctuations. In these experiments there is typically a clump of particles crossing the line of sight to the hypothetical LMC. These clumps can be either gravitationally bound systems or transient phenomena in a galaxy that is still undergoing phase mixing. Substructure of this type, if present in the Galactic distribution of Machos, can lead to large systematic errors in the analysis of microlensing experiments. We also describe how hypothetical WIMP and axion detection experiments might be conducted in a simulated N-body galaxy.Comment: 18 pages of text (LaTeX, AASTeX) with 12 figures. submitted to the Astrophysical Journa

    A Comparison of the Fish Populations and Habitat in Open and Closed Salt Marsh Impoundments in East-Central Florida

    Get PDF
    Historical and recent biological surveys including aerial and ground level photographs reveal gross changes in vegetation and fish habitat associated with impoundment and flooding of salt marshes bordering the Indian River lagoon in east-central Florida. These studies show a depauperate ichthyofauna and floral association in impoundments excluded from estuarine tidal influence. Monthly collections of fishes made during 1979 and 1980 are used to compare two marsh impoundments: one closed to tidal influence from the Indian River lagoon and the other reopened to tidal influence through a single 80 em diameter culvert. The closed impoundment was found to contain a depauperate ichthyofauna consisting of 12 species collected under stressed environmental conditions. Water temperatures ranged from 14 to 34° C, salinities fluctuated widely from 2.0 to 200 ppt and dissolved oxygen was measured as low as 1.2 and as high as 14.2 ppm. The open impoundment contained a far richer ichthyofauna with 41 fish species captured at temperatures of 13.5 to 30° C, salinities of 25 to 38 ppt and dissolved oxygen levels of 2.2 to 7.5 ppm. The open impoundment also demonstrated extensive regrowth of marsh vegetation

    Catastrophic Phase Transitions and Early Warnings in a Spatial Ecological Model

    Full text link
    Gradual changes in exploitation, nutrient loading, etc. produce shifts between alternative stable states (ASS) in ecosystems which, quite often, are not smooth but abrupt or catastrophic. Early warnings of such catastrophic regime shifts are fundamental for designing management protocols for ecosystems. Here we study the spatial version of a popular ecological model, involving a logistically growing single species subject to exploitation, which is known to exhibit ASS. Spatial heterogeneity is introduced by a carrying capacity parameter varying from cell to cell in a regular lattice. Transport of biomass among cells is included in the form of diffusion. We investigate whether different quantities from statistical mechanics -like the variance, the two-point correlation function and the patchiness- may serve as early warnings of catastrophic phase transitions between the ASS. In particular, we find that the patch-size distribution follows a power law when the system is close to the catastrophic transition. We also provide links between spatial and temporal indicators and analyze how the interplay between diffusion and spatial heterogeneity may affect the earliness of each of the observables. We find that possible remedial procedures, which can be followed after these early signals, are more effective as the diffusion becomes lower. Finally, we comment on similarities and differences between these catastrophic shifts and paradigmatic thermodynamic phase transitions like the liquid-vapour change of state for a fluid like water

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)⨂u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated
    • …
    corecore