227 research outputs found

    A UV-visible prime focus camera for the Keck telescopes

    Get PDF
    Many areas of astronomical research rely on deep blue wide-field imaging. Mauna Kea enjoys the very best UV transparency from the ground and the Keck telescopes with 10 meter f/1.75 primaries are well suited to a prime focus camera with a large angular field. Swinburne University leads a proposal to provide a camera (KWFI, for Keck Wide Field Imager) that is optimized in the UV but works well to 1μm wavelength. Keck has interchangeable top end modules, of which one is now unused and easily capable of housing the required corrector lens and detector enclosure. This paper concentrates on details of the KWFI optical design

    A UV-visible prime focus camera for the Keck telescopes

    Get PDF
    Many areas of astronomical research rely on deep blue wide-field imaging. Mauna Kea enjoys the very best UV transparency from the ground and the Keck telescopes with 10 meter f/1.75 primaries are well suited to a prime focus camera with a large angular field. Swinburne University leads a proposal to provide a camera (KWFI, for Keck Wide Field Imager) that is optimized in the UV but works well to 1μm wavelength. Keck has interchangeable top end modules, of which one is now unused and easily capable of housing the required corrector lens and detector enclosure. This paper concentrates on details of the KWFI optical design

    Modeling Uncertainty in Climate Change: A Multi‐Model Comparison

    Get PDF
    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity. It estimates the pdfs of key output variables, including CO 2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insights on tail events

    Maunakea Spectroscopic Explorer (MSE): Implementing systems engineering methodology for the development of a new facility

    Full text link
    Maunakea Spectroscopic Explorer will be a 10-m class highly multiplexed survey telescope, including a segmented primary mirror and robotic fiber positioners at the prime focus. MSE will replace the Canada France Hawaii Telescope (CFHT) on the summit of Mauna Kea, Hawaii. The multiplexing includes an array of over four thousand fibres feeding banks of spectrographs several tens of meters away. We present an overview of the requirements flow-down for MSE, from Science Requirements Document to Observatory Requirements Document. We have developed the system performance budgets, along with updating the budget architecture of our evolving project. We have also identified the links between subsystems and system budgets (and subsequently science requirements) and included system budget that are unique to MSE as a fiber-fed facility. All of this has led to a set of Observatory Requirements that is fully consistent with the Science Requirements.Comment: 20 pages; Proceedings of SPIE Astronomical Telescopes + Instrumentation 2018; Modeling, Systems Engineering, and Project Management for Astronomy VII
    corecore