17 research outputs found

    The anti-HIV drug tenofovir, a reverse transcriptase inhibitor, also targets the herpes simplex virus (HSV) DNA polymerase

    No full text
    Genital herpes is an important cofactor for acquisition of HIV infection and effective prophylaxis is a helpful strategy to halt both HIV and HSV transmission. The antiretroviral agent tenofovir, formulated as a vaginal microbicide gel, was shown to reduce the risk of HIV and HSV-2 acquisition.status: publishe

    Thymidine kinase and protein kinase in drug-resistant herpesviruses: heads of a Lernaean hydra

    No full text
    Herpesviruses thymidine kinase (TK) and protein kinase (PK) allow the activation of nucleoside analogues used in anti-herpesvirus treatments. Mutations emerging in these two genes often lead to emergence of drug-resistant strains responsible for life-threatening diseases in immunocompromised populations. In this review, we analyze the binding of different nucleoside analogues to the TK active site of the three α-herpesviruses [Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and Varicella-Zoster Virus (VZV)] and present the impact of known mutations on the structure of the viral TKs. Furthermore, models of β-herpesviruses [Human cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6)] PKs allow to link amino acid changes with resistance to ganciclovir and/or maribavir, an investigational chemotherapeutic used in patients with multidrug-resistant HCMV. Finally, we set the basis for the understanding of drug-resistance in γ-herpesviruses [Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV)] TK and PK through the use of animal surrogate models.status: publishe

    Viral fitness of MHV-68 viruses harboring drug resistance mutations in the protein kinase or thymidine kinase

    No full text
    Murine γ-herpesvirus-68 (MHV-68), genetically and biologically related to human γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, can be easily propagated in vitro allowing drug resistance studies. Previously, we described specific changes in MHV-68 protein kinase (PK) or thymidine kinase (TK) associated with resistance to various purine or pyrimidine nucleoside analogues, respectively. To investigate how specific TK and PK mutations affect viral replication capacity, we performed dual infection competition assays in which wild-type and drug-resistant virus compete in absence or presence of antivirals in Vero cells. The composition of the mixed viral population was analyzed using next-generation sequencing and relative fitness of seven MHV-68 PK or TK mutants was calculated based on the frequency of viral variants at the time of infection and after 5-days growth. A MHV-68 mutant losing the PK function due to a 2-nucleotide deletion was less fit than the wild-type virus in absence of antivirals, consistent with the essential role of viral PKs during lytic replication, but overgrew the wild-type virus under pressure of purine nucleosides. TK mutant viruses, with frameshift or missense mutations, grew equal to wild-type virus in absence of antivirals, in accordance with the viral TK function only being essential in non-replicating or in TK-deficient cells, but were more fit when treated with pyrimidine nucleosides. Moreover, TK missense mutant viruses also increased fitness under pressure of antivirals other than pyrimidine nucleosides, indicating that MHV-68 TK mutations might influence viral fitness by acting on cellular and/or viral functions that are unrelated to nucleoside activation.status: publishe

    An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness

    No full text
    Drug resistance studies on human γ-herpesviruses are hampered by the absence of an in vitro system that allows efficient lytic viral replication. Therefore, we employed murine γ-herpesvirus-68 (MHV-68) that efficiently replicates in vitro as a model to study the antiviral resistance of γ-herpesviruses. In this study, we investigated the mechanism of resistance to nucleoside (ganciclovir (GCV)), nucleotide (cidofovir (CDV), HPMP-5azaC, HPMPO-DAPy) and pyrophosphate (foscarnet (PFA)) analogues and the impact of these drug resistance mutations on viral fitness. Viral fitness was determined by dual infection competition assays, where MHV-68 drug-resistant viral clones competed with the wild-type virus in the absence and presence of antivirals. Using next-generation sequencing, the composition of the viral populations was determined at the time of infection and after 5 days of growth. Antiviral drug resistance selection resulted in clones harboring mutations in the viral DNA polymerase (DP), denoted Y383SGCV, Q827RHPMP-5azaC, G302WPFA, K442TPFA, G302W+K442TPFA, C297WHPMPO-DAPy and C981YCDV. Without antiviral pressure, viral clones Q827RHPMP-5azaC, G302WPFA, K442TPFA and G302W+K442TPFA grew equal to the wild-type virus. However, in the presence of antivirals, these mutants had a growth advantage over the wild-type virus that was moderately to very strongly correlated with antiviral resistance. The Y383SGCV mutant was more fit than the wild-type virus with and without antivirals, except in the presence of brivudin. The C297W and C981Y changes were associated with a mutator phenotype and had a severely impaired viral fitness in the absence and presence of antivirals. The mutator phenotype caused by C297W in MHV-68 DP was validated by using a CRISPR/Cas9 genome editing approach

    Isolation of microsatellite markers for the endangered Knysna seahorse Hippocampus capensis and their use in the detection of a genetic bottleneck

    No full text
    We report the isolation and characterization of 15 (12 di-, 1 tri- and 2 tetranucleotide) microsatellite markers from Hippocampus capensis, the Knysna seahorse. This marker set allows the detection of a genetic bottleneck as shown in a captive population. Furthermore, we test their genotyping potential in eight other seahorse taxa.status: publishe

    Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis

    Get PDF
    T-705 (favipiravir) is a new antiviral agent in advanced clinical development for influenza therapy. It is supposed to act as an alternative substrate for the viral polymerase, causing inhibition of viral RNA synthesis or virus mutagenesis. These mechanisms were also proposed for ribavirin, an established and broad antiviral drug that shares structural similarity with T-705. We here performed a comparative analysis of the effects of T-705 and ribavirin on influenza virus and host cell functions. Influenza virus-infected cell cultures were exposed to T-705 or ribavirin during single or serial virus passaging. The effects on viral RNA synthesis and infectious virus yield were determined and mutations appearing in the viral genome were detected by whole-genome virus sequencing. Besides, the cellular nucleotide pools were quantified as well as direct inhibition of the viral polymerase enzyme. We demonstrate that the anti-influenza effect of ribavirin is based on IMP dehydrogenase inhibition, which results in fast and profound GTP depletion and an imbalance in the nucleotide pools. In contrast, T-705 acts as a potent and GTP-competitive inhibitor of the viral polymerase. In infected cells, viral RNA synthesis is completely inhibited by T-705 or ribavirin at ≥50 μM, whereas exposure to lower drug concentrations induces formation of non-infectious particles and accumulation of random point mutations in the viral genome. This mutagenic effect is two-fold higher for T-705 than for ribavirin. Hence, T-705 and ribavirin both act as purine pseudobases, but profoundly differ with regard to the mechanism behind their antiviral and mutagenic effects on influenza virus.status: publishe

    Multidrug-resistant cytomegalovirus infection in a pediatric stem cell transplantation patient

    No full text
    publisher: Elsevier articletitle: Multidrug-resistant cytomegalovirus infection in a pediatric stem cell transplantation patient journaltitle: Antiviral Research articlelink: http://dx.doi.org/10.1016/j.antiviral.2016.05.020 content_type: article copyright: © 2016 Elsevier B.V. All rights reserved.status: publishe

    Acyclovir-resistant herpes simplex encephalitis in a patient treated with anti-tumor necrosis factor-α monoclonal antibodies.

    No full text
    Herpes simplex virus is the most common cause of severe sporadic encephalitis. We report a case of herpes simplex type 1-encephalitis in a 50-year-old woman receiving anti-tumor necrosis factor-α monoclonal antibodies adalimumab. Although she was an acyclovir naïve patient, a mixed viral population (wild-type and acyclovir-resistant bearing a thymidine-kinase mutation) was identified in the cerebrospinal fluid. The virus in cerebrospinal fluid evolved and a second thymidine-kinase mutant virus emerged. Combined foscavir and acyclovir treatment resolved the herpes simplex encephalitis. To our knowledge, this is the first report of acyclovir-resistant herpes simplex encephalitis in a patient treated with adalimumab.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore