38 research outputs found

    Generation of induced pluripotent stem cells (iPSCs) from patient with Cri du Chat Syndrome

    Get PDF
    Abstract The Cri du Chat Syndrome (CdCS) is a genetic disease resulting from variable size deletion occurring on the short arm of chromosome 5. The main clinical features are a high-pitched monochromatic cry, microcephaly, severe psychomotor and mental retardation with characteristics of autism spectrum disorders such as hand flapping, obsessive attachments to objects, twirling objects, repetitive movements, and rocking. We reprogrammed to pluripotency peripheral blood mononuclear cells derived from a patient carrying large deletion on the short arm of chromosome 5, using a commercially available non-integrating expression system. The iPSCs expressed pluripotency markers and differentiated in the three embryonic germ layers

    E-cadherin expression and blunted interferon response in blastic plasmacytoid dendritic cell neoplasm

    Get PDF
    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive neoplasm derived from plasmacytoid dendritic cells (pDCs). In this study, we investigated by immunohistochemical analysis the expression of E-cadherin (EC) on pDCs in reactive lymph nodes and tonsils, bone marrow, and in BPDCN. We compared the expression of EC in BPDCN to that in leukemia cutis (LC) and cutaneous lupus erythematosus (CLE), the latter typically featuring pDC activation. In BPDCN, we also assessed the immunomodulatory activity of malignant pDCs through the expression of several type I interferon (IFN-I) signaling effectors and downstream targets, PD-L1/CD274, and determined the extent of tumor infiltration by CD8-expressing T cells. In reactive lymph nodes and tonsils, pDCs expressed EC, whereas no reactivity was observed in bone marrow pDCs. BPDCN showed EC expression in the malignant pDCs in the vast majority of cutaneous (31/33 cases, 94%), nodal, and spleen localizations (3/3 cases, 100%), whereas it was more variable in the bone marrow (5/13, 38,5%), where tumor cells expressed EC similarly to the skin counterpart in 4 cases and differently in other 4. Notably, EC was undetectable in LC (n=30) and in juxta-epidermal pDCs in CLE (n=31). Contrary to CLE showing robust expression of IFN-I-induced proteins MX1 and ISG5 in 20/23 cases (87%), and STAT1 phosphorylation, BPDCN biopsies showed inconsistent levels of these proteins in most cases (85%). Expression of IFN-I-induced genes, IFI27, IFIT1, ISG15, RSAD2, and SIGLEC1, was also significantly (P\u3c0.05) lower in BPDCN as compared with CLE. In BPDCN, a significantly blunted IFN-I response correlated with a poor CD8+T-cell infiltration and the lack of PD-L1/CD274 expression by the tumor cells. This study identifies EC as a novel pDC marker of diagnostic relevance in BPDCN. The results propose a scenario whereby malignant pDCs through EC-driven signaling promote the blunting of IFN-I signaling and, thereby, the establishment of a poorly immunogenic tumor microenvironment

    A boy with X-linked hyper-IgM syndrome and natural killer cell deficiency.

    No full text

    Eye model for floaters’ studies: production of 3D printed scaffolds

    No full text
    Floaters are aggregates of collagen that form inside the vitreous body. They originate by liquefaction of the vitreous and result in visual field distortions. In some cases, the patient discomfort is so severe that surgical removal is required, with the risk of consequent complications. However, floaters have yet to be fully studied and understood in the way and time they originate. The introduction of 3D printing boosted the development of new tools for scientific research such as bio-models. Bio-model applications range from surgical training to implants fabrication. Several models are also bioprinted as rigid scaffolds or bio inks containing living cells. Medical implants are often produced by Stereolithography (SLA) to build complex geometries and meet the desired mechanical properties with high-dimensional accuracies. This paper focuses on the optimization of the printing parameters of an SLA structure to obtain a scaffold with the required characteristic for a proper 3D cell culture and investigation. The model will be the starting point for a future study regarding the etiology and formation mechanism of eye floaters in cell culture. The studied 3D printing parameters are layer thickness, exposure time, and light blocker content added to a biocompatible resin. Due to the final application, the main required property of the scaffold is transparency that allows visual inspection under optical microscope. The selected samples showed a good biocompatibility and visibility under optical microscope, both promising results for long-term cell cultures
    corecore