11 research outputs found

    Performance of a carbon nanotube field emission X-ray source array for stationary digital breast tomosynthesis

    Get PDF
    This work describes the performance of a stationary digital breast tomosynthesis (s-DBT) X-ray tube based on carbon nanotube (CNT) cathodes, and the imaging system developed around it. The s-DBT system has the potential to improve the detection and diagnosis of breast cancer over commercially available digital breast tomosynthesis (DBT) systems. DBT is growing in popularity in the United States, and around the world, as a potential replacement for traditional 2D mammography. The main advantage of DBT over 2D mammography lies in the pseudo-3D nature of the technique allowing the removal of overlapping breast tissue within the image. s-DBT builds on this advantage by removing blur from focal spot motion. Introductions to breast imaging techniques and the DBT modality are given, followed by an introduction to carbon nanotube field emission, the foundation of the s-DBT technology. Details of the s-DBT X-ray tube design and system integration are discussed including specific design parameters, system requirements, and the development process. Also included are summaries of the X-ray tube and system performance over time, and results from characterization measurements. Specific focus is given to the development and completion of a fabrication procedure for tungsten gate mesh, characterization of the CNT cathodes, and improving the system's spatial resolution with use of the focusing electrodes. The tungsten gate mesh is an essential component for extracting electrons from CNTs. A successful deep reactive ion etching fabrication procedure was developed, and the improved gate mesh allowed for higher cathode current and longer pulse widths to be employed in the s-DBT system. Characterization of the CNT cathodes revealed their high-current capacity and the ability to produce relatively long pulse widths, mimicking a 2D imaging modality. This work confirmed that the cathodes are well suited for the task of breast imaging, and explored possible improvements. Lastly, it was shown that by employing and optimizing the focusing electrodes, spatial resolution of the s-DBT system improved, with a tradeoff in loss of transmission rate. This work has contributed to the development and evaluation of the s-DBT technology from the laboratory research stage through clinical trials on human tissue and patients.Doctor of Philosoph

    Observations of Carbon Nanotube Oxidation in an Aberration-Corrected Environmental Transmission Electron Microscope

    Get PDF
    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in-situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for much scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate their structure or prevent their oxidation

    Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    Get PDF
    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to 2D mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary digital breast tomosynthesis (s-DBT), utilizing an array of carbon nanotube (CNT) field emission X-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for X-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 seconds, was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent

    Comparison of a Stationary Digital Breast Tomosynthesis System to Magnified 2D Mammography Using Breast Tissue Specimens

    Get PDF
    RATIONAL AND OBJECTIVES: The objective of this study was to compare the stationary digital breast tomosynthesis (s-DBT) system to a conventional mammography system in a study of breast specimens. Radiologist evaluation of image quality was assessed in a reader study. This study represents the first human tissue imaging with the novel carbon nanotube-based s-DBT device. MATERIALS AND METHODS: Thirty-nine patients, with known breast lesions (Breast Imaging Reporting and Data System 4 or 5) by conventional mammography and scheduled for needle localization biopsy, were recruited under an institutional review board-approved protocol. Specimen images were obtained using a two-dimensional (2D) mammography system with a Ă—1.8 magnification factor and an s-DBT system without a high magnification factor. A reader study was performed with four breast fellowship-trained radiologists over two separate sessions. Malignancy scores were recorded for both masses and microcalcifications (MCs). Reader preference between the two modalities for MCs, masses, and surgical margins was recorded. RESULTS: The s-DBT system was found to be comparable to magnified 2D mammography for malignancy diagnosis. Readers preferred magnified 2D mammography for MC visualization (P < .05). However, readers trended toward a preference for s-DBT with respect to masses and surgical margin assessment. CONCLUSIONS: Here, we report on the first human data acquired using a stationary digital breast tomosynthesis system. The novel s-DBT system was found to be comparable to magnified 2D mammography imaging for malignancy diagnosis. Given the trend of preference for s-DBT over 2D mammography for both mass visibility and margin assessment, s-DBT could be a viable alternative to magnified 2D mammography for imaging breast specimens

    High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array: High resolution stationary digital breast tomosynthesis

    Get PDF
    Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology

    In Situ

    No full text

    Oxidation of Carbon Nanotubes in an Ionizing Environment

    Get PDF
    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission

    Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    No full text
    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to 2D mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary digital breast tomosynthesis (s-DBT), utilizing an array of carbon nanotube (CNT) field emission X-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for X-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 seconds, was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent

    Comparison of a Stationary Digital Breast Tomosynthesis System to Magnified 2D Mammography Using Breast Tissue Specimens

    No full text
    RATIONAL AND OBJECTIVES: The objective of this study was to compare the stationary digital breast tomosynthesis (s-DBT) system to a conventional mammography system in a study of breast specimens. Radiologist evaluation of image quality was assessed in a reader study. This study represents the first human tissue imaging with the novel carbon nanotube-based s-DBT device. MATERIALS AND METHODS: Thirty-nine patients, with known breast lesions (Breast Imaging Reporting and Data System 4 or 5) by conventional mammography and scheduled for needle localization biopsy, were recruited under an institutional review board-approved protocol. Specimen images were obtained using a two-dimensional (2D) mammography system with a Ă—1.8 magnification factor and an s-DBT system without a high magnification factor. A reader study was performed with four breast fellowship-trained radiologists over two separate sessions. Malignancy scores were recorded for both masses and microcalcifications (MCs). Reader preference between the two modalities for MCs, masses, and surgical margins was recorded. RESULTS: The s-DBT system was found to be comparable to magnified 2D mammography for malignancy diagnosis. Readers preferred magnified 2D mammography for MC visualization (P < .05). However, readers trended toward a preference for s-DBT with respect to masses and surgical margin assessment. CONCLUSIONS: Here, we report on the first human data acquired using a stationary digital breast tomosynthesis system. The novel s-DBT system was found to be comparable to magnified 2D mammography imaging for malignancy diagnosis. Given the trend of preference for s-DBT over 2D mammography for both mass visibility and margin assessment, s-DBT could be a viable alternative to magnified 2D mammography for imaging breast specimens

    Acute radiotherapy-associated oral pain may promote tumor growth at distant sites

    Get PDF
    IntroductionPatients developing acute radiotherapy induced dermatitis or oral mucositis commonly experience pain. When severe, this radiotherapy-associated pain (RAP) can necessitate treatment breaks; unfortunately, in a variety of cancers, prolongation of the radiotherapy course has been associated with early cancer relapse and/or death. This is often attributed to accelerated repopulation, but it is unknown whether pain or pain signaling constituents might alter tumor behavior and hasten metastatic disease progression. We studied this by testing the hypothesis that severe acute RAP at one site can hasten tumor growth at a distant site.MethodsMice underwent single fraction tongue irradiation (27 Gy, or 0 Gy “sham” control) to induce severe glossitis. At the time of maximal oral RAP, one of three luciferase-transfected tumor cell lines were injected via tail vein (4T1, B16F10, MOC2; each paired to their syngeneic host: BALB/c or C57BL/6); tumor burden was assessed via in vivo transthoracic bioluminescence imaging and ex vivo pulmonary nodule quantification. Survival was compared using Kaplan-Meier statistics.ResultsTongue irradiation and resultant RAP promoted lung tumor growth of 4T1-Luc2 cells in BALB/c mice. This effect was not a result of off-target radiation, nor an artefact of environmental stress caused by standard (subthermoneutral) housing temperatures. RAP did not affect the growth of B16F10-Luc2 cells, however, C57BL/6 mice undergoing tail vein injection of MOC2-Luc2 cells at the time of maximal RAP experienced early lung tumor-attributable death. Lung tumor growth was normalized when RAP was reduced by treatment with resiniferatoxin (300 µg/kg, subcutaneously, once).DiscussionThis research points towards radiation-induced activation of capsaicin-responsive (TRPV1) neurons as the cause for accelerated growth of tumors at distant (unirradiated) sites
    corecore