2 research outputs found

    Molecular-Level Understanding of CeO<sub>2</sub> as a Catalyst for Partial Alkyne Hydrogenation

    No full text
    The unique catalytic properties of ceria for the partial hydrogenation of alkynes are examined for acetylene hydrogenation. Catalytic tests over polycrystalline CeO<sub>2</sub> at different temperatures and H<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> ratios reveal ethylene selectivities in the range of 75ā€“85% at high degrees of acetylene conversion and hint at the crucial role of hydrogen dissociation on the overall process. Density-functional theory is applied to CeO<sub>2</sub>(111) in order to investigate reaction intermediates and to calculate the enthalpy and energy barrier for each elementary step, taking into account different adsorption geometries and the presence of potential isomers of the intermediates. At a high hydrogen coverage, Ī²-C<sub>2</sub>H<sub>2</sub> radicals adsorbed on-top of surface oxygen atoms are the initial reactive species forming C<sub>2</sub>H<sub>3</sub> species effectively barrierless. The high alkene selectivity is owed to the lower activation barrier for subsequent hydrogenation leading to gas-phase C<sub>2</sub>H<sub>4</sub> compared to that for the formation of Ī²-C<sub>2</sub>H<sub>4</sub> radical species. Moreover, hydrogenation of C<sub>2</sub>H<sub>5</sub> species, if formed, must overcome significantly large barriers. Oligomers are the most important byproduct of the reaction and they result from the recombination of chemisorbed C<sub>2</sub>H<sub><i>x</i></sub> species. These findings rationalize for the first time the applicability of CeO<sub>2</sub> as a catalyst for olefin production and potentially broaden its use for the hydrogenation of polyunsaturated and polyfunctionalized substrates containing triple bonds

    Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System <i>via</i> Copolymerization with Silver Tricyanomethanide

    No full text
    Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface Ī¶-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnationā€“reduction methods, here exemplified with 1-hexyne
    corecore