110 research outputs found

    Update to the College of American Pathologists Reporting on Thyroid Carcinomas

    Get PDF
    Background The reporting of thyroid carcinomas follows the recommendations of the College of American Pathologists (CAP) protocols and includes papillary carcinoma, follicular carcinoma, anaplastic carcinoma and medullary carcinoma. Despite past and recent efforts, there are a number of controversial issues in the classification and diagnosis of thyroid carcinomas (TC) that, potentially impact on therapy and prognosis of patients with TC. Discussion The most updated version of the CAP thyroid cancer protocol incorporates recent changes in histologic classification as well as changes in the staging of thyroid cancers as per the updated American Joint Commission on Cancer staging manual. Among the more contentious issues in the pathology of thyroid carcinoma include the defining criteria for tumor invasiveness. While there are defined criteria for invasion, there is not universal agreement in what constitutes capsular invasion, angioinvasion and extrathyroidal invasion. Irrespective of the discrepant views on invasion, pathologists should report on the presence and extent (focal, widely) of capsular invasion, angioinvasion and extrathyroidal extension. These findings assist clinicians in their assessment of the recurrence risk and potential for metastatic disease. It is beyond the scope of this paper to detail the entire CAP protocol for thyroid carcinomas; rather, this paper addresses some of the more problematic issues confronting pathologists in their assessment and reporting of thyroid carcinomas. Conclusion The new CAP protocol for reporting of thyroid carcinomas is a step toward improving the clinical value of the histopathologic reporting of TC. Large meticulous clinico-pathologic and molecular studies with long term follow up are still needed in order to increase the impact of microscopic examination on the prognosis and management of TC

    Quantitative measurement of thyroglobulin mRNA in peripheral blood of patients after total thyroidectomy

    Get PDF
    Previous studies have reported the clinical usefulness of reverse transcription-polymerase chain reaction (RT-PCR) detection of thyroglobulin (TG) mRNA in the peripheral blood of patients with differentiated thyroid carcinoma. To evaluate this usefulness, we measured TG mRNA in the peripheral blood of patients diagnosed with thyroid carcinoma after total thyroidectomy by real-time quantitative RT-PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as an internal control. Surprisingly, we detected TG mRNA in all samples obtained after total thyroidectomy, including those from 4 medullary carcinomas. Further, there was no statistical difference in expression levels of TG mRNA in the patients with or without metastasis, and no significant correlation was found between serum TG concentrations and the expression levels of TG mRNA. These results give rise to a question regarding the clinical applications of not only RT-PCR detection but also quantitative measurement of TG mRNA in peripheral blood. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Tyrosinase expression in the peripheral blood of stage III melanoma patients is associated with a poor prognosis: a clinical follow-up study of 110 patients

    Get PDF
    The aim of this study is to define the relationship between the tyrosinase expression in the peripheral blood and the clinical course of the disease in stage III disease-free melanoma patients after radical lymph node dissection. RT-PCR techniques were used to identify tyrosinase mRNA in 110 patients; a total of 542 blood samples were investigated. In all, 54 patients (49%) showed at least one positive result; 13 patients (11.8%) showed baseline positive results: six became negative thereafter, whereas seven showed follow-up positive results until disease progression occurred. One or more positive determinations were found during follow-up in 41 patients with negative baseline tyrosinase. No correlation was found between baseline results and the relapse rate or disease-free survival (DFS), whereas a significant correlation was found between positive tyrosinase results and disease recurrence during follow-up. In fact, 72.9% of positive patients relapsed, but only 19.3% of negative cases did so. The median interval between the positive results and the clinical demonstration of the relapse was 1.9 months (range 1-6.6). Disease-free survival multivariate analysis selected, as independent variables, Breslow thickness (P=0.05), lymph node involvement according to the AJCC classification (P=0.05) and tyrosinase expression (P=0.0001). In conclusion, RT-PCR tyrosinase mRNA expression is a reliable and reproducible marker associated with a high risk of melanoma progression and we encourage its clinical use in routine follow-up

    Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes

    Get PDF
    The reverse transcription polymerase chain reaction (RT-PCR) amplification of cytokeratin 20 (CK20) mRNA is considered a promising candidate method for the detection of circulating tumour cells in bone marrow and peripheral blood of cancer patients. In this study we have investigated the diagnostic specificity of the CK20 mRNA detection in samples from healthy donors (HD; n = 33), intensive care units patients (ICU; n = 20) and bone marrow obtained from patients suffering from chronic inflammatory diseases (CID; n = 14). RNAs purified from stabilized lysates showed positive results in 24% of the HD group (8/33), 35% of the ICU group (8/20) and in 40% of the CID group (5/14). The use of Ficoll gradients to separate nucleated cells completely restored the specificity of this CK20 RT-PCR assay. The CK20-expressing cells are positively identified to belong to the granulocyte fraction of leucocytes, which appear to express the gene on a background level. Our results demonstrate for the first time that CK20 mRNA expression is not limited to epithelium. Its occurrence in normal granulocytes has to be considered in tests designed to detect circulating cancer cells or micrometastases. © 1999 Cancer Research Campaig

    Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    Get PDF
    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation

    Gene expression of circulating tumour cells in breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diagnostic tools to predict the prognosis in patients suffering from breast cancer (BC) need further improvements. New technological achievements like the gene profiling of circulating tumour cells (CTC) could help identify new prognostic markers in the clinical setting. Furthermore, gene expression patterns of CTC might provide important informations on the mechanisms of tumour cell metastasation.</p> <p>Materials and methods</p> <p>We performed realtime-PCR and multiplex-PCR analyses following immunomagnetic separation of CTC. Peripheral blood (PB) samples of 63 patients with breast cancer of various stages were analyzed and compared to a control group of 14 healthy individuals. After reverse-transcription, we performed multiplex PCR using primers for the genes <it>ga733.3, muc-1 </it>and <it>c-erbB2. Mammaglobin1, spdef </it>and <it>c-erbB2 </it>were analyzed applying realtime-PCR.</p> <p>Results</p> <p><it>ga733.2 </it>overexpression was found in 12.7% of breast cancer cases, <it>muc-1 </it>in 15.9%, <it>mgb1 </it>in 9.1% and <it>spdef </it>in 12.1%. In this study, <it>c-erbB2 </it>did not show any significant correlation to BC, possibly due to a highly ambient expression. Besides single gene analyses, gene profiles were additionally evaluated. Highly significant correlations to BC were found in single gene analyses of <it>ga733.2 </it>and <it>muc-1 </it>and in gene profile analyses of <it>ga733.3</it>*<it>muc-1 </it>and GA7 <it>ga733.3</it>*muc-1*<it>mgb1</it>*<it>spdef</it>.</p> <p>Conclusion</p> <p>Our study reveals that the single genes <it>ga733.3, muc-1 </it>and the gene profiles <it>ga733.3</it>*<it>muc-1 </it>and <it>ga733.3</it>*3<it>muc-1</it>*<it>mgb1</it>*<it>spdef </it>can serve as markers for the detection of CTC in BC. The multigene analyses found highly positive levels in BC patients. Our study indicates that not single gene analyses but subtle patterns of multiple genes lead to rising accuracy and low loss of specificity in detection of breast cancer cases.</p

    Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas

    Get PDF
    Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO
    corecore