953 research outputs found
A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction
The optimal power performance of a first principle quantum heat engine model
shows friction-like phenomena when the internal fluid Hamiltonian does not
commute with the external control field. The model is based on interacting
two-level-systems where the external magnetic field serves as a control
variable.Comment: 4 pages 3 figure
Building Disease Detection Algorithms with Very Small Numbers of Positive Samples
Although deep learning can provide promising results in medical image
analysis, the lack of very large annotated datasets confines its full
potential. Furthermore, limited positive samples also create unbalanced
datasets which limit the true positive rates of trained models. As unbalanced
datasets are mostly unavoidable, it is greatly beneficial if we can extract
useful knowledge from negative samples to improve classification accuracy on
limited positive samples. To this end, we propose a new strategy for building
medical image analysis pipelines that target disease detection. We train a
discriminative segmentation model only on normal images to provide a source of
knowledge to be transferred to a disease detection classifier. We show that
using the feature maps of a trained segmentation network, deviations from
normal anatomy can be learned by a two-class classification network on an
extremely unbalanced training dataset with as little as one positive for 17
negative samples. We demonstrate that even though the segmentation network is
only trained on normal cardiac computed tomography images, the resulting
feature maps can be used to detect pericardial effusion and cardiac septal
defects with two-class convolutional classification networks
Atrial Septal Defects
Atrial septal defects are the third most common type of congenital heart disease. Included in this group of malformations are several types of atrial communications that allow shunting of blood between the systemic and the pulmonary circulations. Most children with isolated atrial septal defects are free of symptoms, but the rates of exercise intolerance, atrial tachyarrhythmias, right ventricular dysfunction, and pulmonary hypertension increase with advancing age and life expectancy is reduced in adults with untreated defects. The risk of development of pulmonary vascular disease, a potentially lethal complication, is higher in female patients and in older adults with untreated defects. Surgical closure is safe and effective and when done before age 25 years is associated with normal life expectancy. Transcatheter closure offers a less invasive alternative for patients with a secundum defect who fulfil anatomical and size criteria. In this Seminar we review the causes, anatomy, pathophysiology, treatment, and outcomes of atrial septal defects in children and adult patients in whom this defect is the primary cardiac anomaly
A quantum-mechanical Maxwell's demon
A Maxwell's demon is a device that gets information and trades it in for
thermodynamic advantage, in apparent (but not actual) contradiction to the
second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon
exhibit features that classical versions do not: in particular, a device that
gets information about a quantum system disturbs it in the process. In
addition, the information produced by quantum measurement acts as an additional
source of thermodynamic inefficiency. This paper investigates the properties of
quantum-mechanical Maxwell's demons, and proposes experimentally realizable
models of such devices.Comment: 13 pages, Te
Performance of discrete heat engines and heat pumps in finite time
The performance in finite time of a discrete heat engine with internal
friction is analyzed. The working fluid of the engine is composed of an
ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction
induces a minimal cycle time. The power output of the engine is optimized with
respect to time allocation between the contact time with the hot and cold baths
as well as the adiabats. The engine's performance is also optimized with
respect to the external fields. By reversing the cycle of operation a heat pump
is constructed. The performance of the engine as a heat pump is also optimized.
By varying the time allocation between the adiabats and the contact time with
the reservoir a universal behavior can be identified. The optimal performance
of the engine when the cold bath is approaching absolute zero is studied. It is
found that the optimal cooling rate converges linearly to zero when the
temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure
L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass
We investigate the distribution of single molecule line shape cumulants,
, in low temperature glasses based on the sudden jump,
standard tunneling model. We find that the cumulants are described by L\'evy
stable laws, thus generalized central limit theorem is applicable for this
problem.Comment: 5 pages, 3 figure
Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology
This paper aims to provide information and explanations regarding the clinically relevant options, strengths, and limitations of cardiovascular magnetic resonance (CMR) in relation to adults with congenital heart disease (CHD). Cardiovascular magnetic resonance can provide assessments of anatomical connections, biventricular function, myocardial viability, measurements of flow, angiography, and more, without ionizing radiation. It should be regarded as a necessary facility in a centre specializing in the care of adults with CHD. Also, those using CMR to investigate acquired heart disease should be able to recognize and evaluate previously unsuspected CHD such as septal defects, anomalously connected pulmonary veins, or double-chambered right ventricle. To realize its full potential and to avoid pitfalls, however, CMR of CHD requires training and experience. Appropriate pathophysiological understanding is needed to evaluate cardiovascular function after surgery for tetralogy of Fallot, transposition of the great arteries, and after Fontan operations. For these and other complex CHD, CMR should be undertaken by specialists committed to long-term collaboration with the clinicians and surgeons managing the patients. We provide a table of CMR acquisition protocols in relation to CHD categories as a guide towards appropriate use of this uniquely versatile imaging modalit
- …