326 research outputs found

    Boundary-integral method for poloidal axisymmetric AC magnetic fields

    Get PDF
    This paper presents a boundary-integral equation (BIE) method for the calculation of poloidal axisymmetric magnetic fields applicable in a wide range of ac frequencies. The method is based on the vector potential formulation and it uses the Green's functions of Laplace and Helmholtz equations for the exterior and interior of conductors, respectively. The work is particularly focused on a calculation of axisymmetric Green's function for the Helmholtz equation which is both simpler and more accurate compared to previous approaches. Three different approaches are used for calculation of the Green's function depending on the parameter range. For low and high dimensionless ac frequencies we use a power series expansion in terms of elliptical integrals and an asymptotic series in terms of modified Bessel functions of second kind, respectively. For the intermediate frequency range, Gauss-Chebyshev-Lobatto quadratures are used. The method is verified by comparing with the analytical solution for a sphere in a uniform external ac field. The application of the method is demonstrated for a composite model inductor containing an external secondary circuit.Comment: 8 pages, 4 figure

    Contactless Electromagnetic Phase-Shift Flowmeter for Liquid Metals

    Get PDF
    We present a concept and test results of an eddy-current flowmeter for liquid metals. The flow rate is determined by applying a weak ac magnetic field to a liquid metal flow and measuring the flow-induced phase disturbance in the external electromagnetic field. The phase disturbance is found to be more robust than that of the amplitude used in conventional eddy-current flowmeters. The basic characteristics of this type of flowmeter are analysed using simple theoretical models, where the flow is approximated by a solid body motion. Design of such a flowmeter is presented and its test results reported.Comment: 19 pages, 13 figures, to appear in Meas. Sci. Technol (final version

    Contactless inductive flow tomography

    Full text link
    The three-dimensional velocity field of a propeller driven liquid metal flow is reconstructed by a contactless inductive flow tomography (CIFT). The underlying theory is presented within the framework of an integral equation system that governs the magnetic field distribution in a moving electrically conducting fluid. For small magnetic Reynolds numbers this integral equation system can be cast into a linear inverse problem for the determination of the velocity field from externally measured magnetic fields. A robust reconstruction of the large scale velocity field is already achieved by applying the external magnetic field alternately in two orthogonal directions and measuring the corresponding sets of induced magnetic fields. Kelvin's theorem is exploited to regularize the resulting velocity field by using the kinetic energy of the flow as a regularizing functional. The results of the new technique are shown to be in satisfactory agreement with ultrasonic measurements.Comment: 9 Figures; to appear in Phys. Rev

    Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow

    Get PDF
    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field (HMRI) using the inductionless approximation defined by a zero magnetic Prandtl number (Pm=0). The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically-modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wave length of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.Comment: 16 pages, 15 figures; minor revision, Phys. Rev. E (in press

    Role of soft-iron impellers on the mode selection in the VKS dynamo experiment

    Full text link
    A crucial point for the understanding of the von-K\'arm\'an-Sodium (VKS) dynamo experiment is the influence of soft-iron impellers. We present numerical simulations of a VKS-like dynamo with a localized permeability distribution that resembles the shape of the flow driving impellers. It is shown that the presence of soft-iron material essentially determines the dynamo process in the VKS experiment. % An axisymmetric magnetic field mode can be explained by the combined action of the soft-iron disk and a rather small α\alpha-effect parametrizing the induction effects of unresolved small scale flow fluctuations
    • 

    corecore