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Abstract. We present a concept and test results of an eddy-current flowmeter for

liquid metals. The flow rate is determined by applying a weak ac magnetic field to

a liquid metal flow and measuring the flow-induced phase disturbance in the external

electromagnetic field. The phase disturbance is found to be more robust than that of

the amplitude used in conventional eddy-current flowmeters. The basic characteristics

of this type of flowmeter are analysed using simple theoretical models, where the flow

is approximated by a solid body motion. Design of such a flowmeter is presented and

its test results reported.
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1. Introduction

Accurate and reliable flow rate measurements are required in many technological

processes using liquid metals. Commercially available electromagnetic flowmeters

typically use electrodes in direct contact to the liquid to measure the voltage induced

by the flow in dc magnetic field [1, 2, 3, 4]. The use of electrodes is problematic in

aggressive media like molten metals, for which a contactless treatment is preferable [5].

A well-known example of such a contactless flowmeter is the magnetic flywheel, which

is described in the textbook of Shercliff [1] and employed by Bucenieks [6, 7] for the flow

rate measurements. Such kind of flowmeters have recently been reembodied under the

name of Lorentz force velocimetry [8, 9]. As the name suggests, the Lorentz force sensors

measure the electromagnetic force exerted by the flow on a closely placed permanent

magnet. This force is proportional to the product of the electrical conductivity of the

fluid and the square of the applied magnetic field strength. Another type of flowmeter

using a single rotating magnet has recently been reported in [10, 11]. This sensor

is based on the equilibrium of the electromagnetic torques caused by the flow on the

magnet and by the magnet on the flow. The equilibrium rotation rate is, in a reasonable

range of parameters, independent of both the strength of the permanent magnet and the

conductivity of the liquid, which makes the measurements insensitive to temperature

variations in the liquid.

Alternatively, the flow of liquid metal can be determined in a contactless way by

eddy-current flowmeters, which measure the flow-induced perturbation of an externally

applied magnetic field [12, 13]. This principle underlies also the so-called flow

tomography approach using either dc [14] or ac magnetic fields [15]. The main problem

of this method is to measure a weak induced magnetic field with the relative amplitude

of the order of magnitude of the magnetic Reynolds number Rm ∼ 10−4 − 10−1 on the

background of the applied magnetic field. There are a number of measurement schemes

known which rely on the geometrical compensation of the applied field by a proper

arrangement of sending and receiving coils so that only the signal induced by the flow is

measured [16, 17]. Such flowmeters employ the flow-induced asymmetry of the magnetic

field. Unfortunately, there are a number of side effects such as, for example, the thermal

expansion, which can also cause some asymmetry between the receiving coils.

As the flow can disturb not only the amplitude of an ac magnetic field but also its

phase distribution, the latter can also be used for the flow rate measurements [18, 19]. In

this paper, we analyse the basic characteristics of such a phase-shift flowmeter, present

its technical implementation and report the test results.

The paper is organised as follows. The basic physical effects are considered in

Section 2 using a simple model where the liquid flow is approximated by a solid body

motion. In Section 3 we describe the realization of the phase-shift sensor and present

flow rate measurements at two different liquid metal loops. The paper is concluded by

a summary in Section 4.
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2. Mathematical model

2.1. Basic equations

Consider a medium of electrical conductivity σ moving with the velocity v = exV in

an ac magnetic field with the induction B alternating harmonically with the angular

frequency ω. The induced electric field follows from the Maxwell-Faraday equation as

E = −∇Φ − ∂tA, where Φ is the electric potential, A is the vector potential and

B = ∇×A. The density of the electric current induced in the moving medium is given

by Ohm’s law

j = σ(E + v ×B) = σ(−∇Φ− ∂tA+ v ×∇×A).

Assuming the ac frequency to be sufficiently low to neglect the displacement current,

Ampere’s law j = 1
µ0

∇×B leads to the following advection-diffusion equation for the

vector potential

∂tA+ (v ·∇)A =
1

µ0σ
∇2A, (1)

where the gauge invariance of A has been used to specify the scalar potential as

Φ = v ·A−
1

µ0σ
∇ ·A.

In the following, we consider an applied magnetic field varying in time harmonically as

A0(r, t) = A0(r) cos(ωt), which allows us to search for a solution in the complex form

A(r, t) = ℜ
[

A(r)eiωt
]

. Then equation (1) for the amplitude distribution of the vector

potential takes the form

iωA+ (v ·∇)A =
1

µ0σ
∇2A. (2)

Further we focus on a simple 2D externally applied magnetic field, which is invariant

along the unit vector ǫ. Such a magnetic field can be specified by a single component

of the vector potential A = ǫA as B = ∇ × ǫA = −ǫ × ∇A, where B has only two

components in the plane perpendicular to ǫ. The continuity of B at the interface S

between conducting and insulating media imply the following boundary conditions:

[A]S = [∂nA]S = 0, (3)

where [f ]S denotes the jump of quantity f across the boundary S; ∂n ≡ (n ·∇) is the

derivative normal to the boundary.

2.2. Solution for a single harmonic of the magnetic field

We start with a simple model shown in figure 1(a), where the conducting medium is a

layer of thickness 2H, and the applied magnetic field is a harmonic standing wave with

the vector potential amplitude given by

A0(r, t) = ezA0(r, t) = ezÂ0(y) cos(kx) cos(ωt),
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Figure 1. Model of a conducting layer of thickness 2H in an external magnetic field

represented by a standing harmonic wave (a) and generated by a couple of straight

wires (b).

where k is the wavenumber in the x-direction. Henceforth, we choose the half-thickness

H as the length scale and introduce a dimensionless ac frequency and the magnetic

Reynolds number,

ω̄ = µ0σωH
2, (4)

Rm = µ0σV H, (5)

where the latter represents a dimensionless velocity. It is important to note that this key

parameter depends on the product of the physical velocity and electrical conductivity.

Although for a typical liquid metal flow Rm ≪ 1, the following analysis will not be

restricted to this case unless stated otherwise. For a free space, where σ = 0, equation

(2) takes the form

d2Â0

dy2
− k2Â0 = 0, (6)

and has the solution

Â0(y; k) = C0e
|k|(y−1), (7)

where the constant

C0 = Â0(1; k) (8)

defines the amplitude of the Fourier mode with the wavenumber k of the external

magnetic field at the upper boundary of the layer. It is important to note that the

external magnetic field, which is assumed in the form of a standing wave, can be

represented as a superposition of two oppositely travelling waves

A0(r, t) =
1

2

[

A+
0 (r, t) + A−

0 (r, t)
]

,

where A±
0 (r, t) = Â0(y) cos(ωt± kx). This implies that the solution can be sought in a

similar form as

A(r, t) =
1

2

[

A+(r, t) + A−(r, t)
]

,
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where A±(r, t) = ℜ
[

Â(y;±k)ei(ωt±kx)
]

are oppositely travelling fields. The solution

governed by equation (6) in the free space above the layer (y ≥ 1), can be written as

Â(y; k) = Â0(y; k) + Â1(y; k), (9)

where the first term represents the external field (7) and Â1(y; k) = C1e
−|k|(y−1) is the

induced field. In the free space below the layer, y ≤ −1, the solution satisfying (6) is

Â(y; k) = C3e
|k|(y+1). (10)

In the conducting layer, −1 ≤ y ≤ 1, equation (2) for a travelling field takes the form

d2Â

dy2
− κ2Â = 0, (11)

where κ(k) =
√

k2 + i(ω̄ + kRm), and has the solution

Â(y; k) = C2 sinh(κy) +D2 cosh(κy). (12)

The unknown constants, which are regarded as functions of the wavenumber k, are found

from the boundary conditions (3) as follows

C2 = C0|k|/ (|k| sinh(κ) + κ cosh(κ)) (13)

D2 = C0|k|/ (|k| cosh(κ) + κ sinh(κ)) , (14)

C1 = D2 cosh(κ) + C2 sinh(κ)− C0, (15)

C3 = D2 cosh(κ)− C2 sinh(κ). (16)

2.3. Solution for an external magnetic field generated by a couple of straight wires

The solution above can easily be extended to an external magnetic field generated by

a finite-size coil. The simplest model of such a coil consists of two parallel straight

wires fed with an ac current of amplitude I0 flowing in the opposite directions along the

z-axis at distance 2s in the x-direction and placed at height h above the upper surface

of the layer, as shown in figure 1(b). The free-space distribution of the vector potential

amplitude having only the z-component, which is further scaled by µ0I0, is governed by

∇
2A0 = −δ(r − hey − sex) + δ(r − hey + sex), (17)

where δ(r) is the Dirac delta function and r is the radius vector. The problem is solved

by the Fourier transform Â(y; k) =
∫∞

−∞
A(x, y)eikx dx, which converts (17) into

d2Â0

dy2
− k2Â0 = −f(k)δ(y − h), (18)

where f(k) =
∫∞

−∞
[δ(x− s)− δ(x+ s)]eikx dx = 2i sin(ks). The solution of (18) decaying

at y → ±∞ can be written as

Â0(y; k) = c(k)e−|k(y−h)|, (19)

where the unknown coefficient

c(k) =
f(k)

2|k|
=

i sin(ks)

|k|
. (20)
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follows from the boundary condition
[

dÂ/dy
]
∣

∣

∣

y=h
= −f(k), which is obtained by

integrating equation (18) over the singularity at z = h. The solution for a separate

Fourier mode in the regions above, below and inside the layer is given, respectively,

by expressions (9, 10) and (12) with the coefficients (13)–(16) containing the constant

C0, which is defined by substituting (19) into (8). Then the spatial distribution of

the complex vector potential amplitude is given by the sum of Fourier modes, which

is defined by the inverse Fourier transform A(x, y) = 1
2π

∫∞

−∞
Â(y; k)e−ikx dk and can

efficiently be calculated using the Fast Fourier Transform.

2.4. Numerical results

For physical interpretation of the following results, note that the magnetic flux through

a surface is given by the circulation of the vector potential along the contour encircling

that surface. For the simple 2D case under consideration, when the vector potential has

only one component, the difference of the vector potential between two points defines the

linear flux density between two lines parallel to the vector potential at those two points.

The same holds also for the time derivative of the corresponding quantities. Thus, the

difference of the vector potential amplitudes between two points is proportional to the

e.m.f. amplitude which could be measured by an idealised coil consisting of two straight

parallel wires placed along the z-axis at those points. Correspondingly, the single-point

vector potential considered below gives the e.m.f. measured by a ‘wide’ coil with the

second wire placed sufficiently far away in the region of a negligible magnetic field.

2.4.1. Single harmonic of the magnetic field The flux lines and the corresponding phase

distribution of the vector potential are plotted in figure 2 for the layer at rest (a,c,e)

and moving to the right with Rm = 1 (b,d,f ). The flux components in the phase and

shifted by π/2 relative to the applied magnetic field correspond to the time instants

when the applied field is at maximum and absent, respectively. In the latter case, the

magnetic field is entirely due to the eddy currents. Figure 2(e) shows that for the layer

at rest, the phase is constant over a half-wavelength of the applied field and varies only

with the vertical position except below the layer, where the phase does not vary at all.

It is important to note that this phase distribution is actually piece-wise constant with

the phase jumping by π across nodes of the standing wave. This phase discontinuity,

which is crucial for the subsequent analysis, is caused by two adjacent halves of standing

wave oscillating in opposite phases. As seen in figure 2(f), this simple phase distribution

breaks down as soon as the layer starts to move. Although for a moving layer the phase

is no longer horizontally constant, it is still vertically constant below the layer, where the

field itself decays exponentially with the vertical distance. This is an important result,

which illustrates why the phase measurements, in contrast to those of the amplitude,

are more robust and, in this case, actually independent of the vertical position of the

receiving coils. Note that such a perfect vertical phase homogeneity holds only when

the applied magnetic field is a standing harmonic wave.
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Figure 2. The magnetic flux components in the phase with the applied field (a,b),

shifted by π/2 (c,d), and the corresponding phase distribution (e,f ) for ω̄ = 1 and

k = 1 at Rm = 0 (layer at rest) (a,c,e) and Rm = 1 (b,d,f ).

Figure 3(a) shows the phase distribution along the bottom of the layer over a half-

wavelength between two nodes of the applied field for various dimensionless velocities

Rm. Henceforth the phase ϕ is presented in radians and scaled by π so that ±π phase

corresponds to ϕ = ±1. The original phase discontinuity between adjacent half-waves

shows up in 3(a) as soon as the layer starts to move. The increase in the velocity is

seen to smooth out this discontinuity and to shift it further downstream. Note that the

total phase variation over a half-wave remains ±1 (±π) regardless of the velocity, as it

should be for a spatially-periodic solution.
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Figure 3. Phase distribution over a half-wavelength of the applied magnetic field at

various dimensionless velocities defined by Rm (a) and the phase variation with Rm

at different points along the bottom of the layer for ω̄ = 1 and k = 1.
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Figure 4. The phase sensitivity versus the dimensionless frequency ω̄ at various

horizontal observation positions below the layer for k = 1 (a) and k = 0.5 (b).

The phase variation with the velocity at several observation points along the bottom

of the layer is plotted in figure 3(b). As seen, the closer the observation point to the node,

the steeper the phase variation, but the shorter the velocity range of this variation. The

steep part of the phase variation with the velocity is obviously due to the observation

point lying in the transition region between two adjacent half-waves discussed above.

The phase variation is relatively weak when the observation point is located either

before or after the transition region. This illustrates the importance of the location of

observation point, which for low velocities should be placed downstream in close vicinity

to the node or symmetry plane of the applied magnetic field, where the phase varies

significantly with the velocity. In the case of the phase difference measured between two

coils, the measurement sensitivity can be increased by a horizontal offset of the sensing

coils with respect to the exciting coil so that one of the sensing coils gets close to the

midplane, as demonstrated experimentally in the following.

To determine the optimal frequency of the applied ac field, it is useful to consider
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Figure 5. Phase difference between two observation points placed symmetrically with

respect to x = 0 below the layer versus the dimensionless velocity Rm for ω̄ = 2 and

k = 1.

the rate of variation of phase ϕ with the velocity Rm. For sufficiently small Rm, which

present the main interest here, the phase sensitivity is defined as

K =
1

π

∂ϕ

∂Rm

∣

∣

∣

∣

Rm=0

. (21)

This quantity plotted in figure 4 versus the dimensionless frequency ω̄ shows that there

is an optimal ac frequency ω̄o at which the sensitivity attains a maximum. The optimal

frequency, which is seen to be independent of the horizontal position of the observation

point along the bottom of the layer, decreases with the wavenumber of the applied

magnetic field: ω̄o ≈ 2.1 for k = 1 and ω̄o ≈ 0.73 for k = 0.5.

The phase difference between two observation points placed symmetrically at

various distances from x = 0 below the layer is plotted in figure 5 versus Rm for ω̄ = 2

and k = 1. As discussed above, the velocity sensitivity of this phase difference is seen to

increase as the observation points are moved closer to the nodes at x = ±0.5. The closer

the observation points to the node, the higher the sensitivity but the shorter the velocity

range that can be measured. This is because the phase difference is seen first to saturate

and then to reduce due to smoothing by the motion of medium. This smoothing effect

limits the maximum velocity that can be measured and becomes significant at Rm & 2,

which corresponds to rather high physical velocities.

2.4.2. Sending coil modelled by two straight wires In this section, we turn to a more

complicated external magnetic field generated by a couple of parallel wires with opposite

currents separated by the horizontal distance 2s = 2 and put at the height h = 1

above the layer, as shown in figure 1(b). The flux lines and the corresponding phase

distribution of the vector potential are plotted in figure 6 for the layer at rest (a,c,e)

and moving to the right with Rm = 1 (b,d,f ). In the former case, the vector potential

distribution is exactly anti-symmetric with respect to the symmetry plane at x = 0,

which thus is analogous to a node in a standing wave. Correspondingly, there is a phase
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Figure 6. The flux components in the phase with the applied field (a,b), shifted by

π/2 (c,d), and the corresponding phase distribution (e,f ) for the external magnetic

field generated by two parallel wires with ω̄ = 1 at Rm = 0 (layer at rest) (a,c,e) and

Rm = 1 (b,d,f ).

jump of π at x = 0 when the layer is at rest. Figures 6(b,d,f ) show that the motion

of the layer brakes the symmetry and smooths out the phase discontinuity. Although,

as seen in 6(f ), the phase distribution below the layer is no more vertically invariant as

for the spatially-harmonic external magnetic field considered in the previous section, its

vertical variation is still weak in comparison to that of the amplitude.

Figures 7(a) and (b) show phase distributions at various velocities (Rm), and the

phase variation with Rm at different points along the bottom of the layer for ω̄ = 1. In

contrast to the spatially-harmonic external magnetic field, now the phase distribution
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Figure 7. Phase distribution of the vector potential at various velocities defined by

Rm (a) and phase variation with the velocity at different points along the bottom of

the layer for ω̄ = 1 (b).
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Figure 8. The phase sensitivity versus the frequency at various horizontal observation

points at the bottom of the layer (a) and the phase difference between two observation

points placed symmetrically with respect to x = 0 at the bottom of the layer versus

the dimensionless velocity Rm for ω̄ = 1 (b).

is slightly non-uniform rather than piece-wise constant along the layer even without

the motion. Nevertheless, the field distribution is still symmetric with respect to the

midplane between the wires. Motion is seen to break this symmetry and to smooth out

the phase jump. The phase variation with velocity is shown in figure 7(b) at several

points along the bottom of the layer for ω̄ = 1. It is important to note that sufficiently

close to the symmetry plane, the original phase non-uniformity at Rm = 0 is small

relative to that induced by the motion.

The phase sensitivity introduced in the previous section, which is plotted in figure

8(a) versus the dimensionless frequency, shows that the optimal frequency at which

the phase sensitivity attains a maximum for this model is ω̄ ≈ 0.14. This frequency

is relatively low because in accordance to (20) the applied magnetic field is dominated

by low-wavenumber (long-wave) modes. The reduction of the sensitivity above the

optimal frequency is rather slow in comparison to its steep increase at sub-optimal
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(a) (b)

Figure 9. Experimental concept (a) and a laboratory model (b) of the phase-shift

flowmeter.

frequencies. Thus, the loss of the sensitivity at ω̄ ≈ 1 is not very significant, especially

for the observation points further away from the midplane. The phase difference between

the pairs of observation points placed symmetrically relative to the midplane, which is

plotted in figure 8(b) for ω̄ = 1, shows the same tendency as for the spatially harmonic

external field. Namely, the closer the observation points to the midpoint, the higher the

sensitivity, but the faster the saturation of the phase difference. Thus, the choice of the

observation points depends on the range of velocities to be measured. In this case, when

the observation points are placed exactly symmetrically with respect to the midpoint,

the original phase difference at Rm = 0 is π. This difference reduces and tends to zero

with the increase of Rm as the phase is smoothed out by the advection of the magnetic

field.

3. Flowmeter realization and test results

A realization of the phase-shift flowmeter based on the principles described above is

shown in figure 9. It consists of two receiving coils and a sending coil, which generates

an ac magnetic field, placed on the opposite sides of the duct with a liquid metal flow.

This flowmeter operates like a split transformer with two secondary coils [18, 19]. The

phase shift between the voltages induced in the two receiving coils is measured using a

lock-in amplifier with the internal averaging time of 100ms and the accuracy of at least

2%.

Receiving and sending coils can be placed either directly against each other or

shifted by some offset l∗, as shown in figure 10. Further we refer to these two

arrangements as symmetric and asymmetric ones. The theoretical analysis above

suggests that such an offset may enhance the sensitivity of the flowmeter.
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Figure 10. The flowmeter setup with a liquid metal flow of averaged velocity V in

pipe (2) of diameter di, sending coil (3), laminated soft-iron yoke (4,7), receiving coils

(5, 6), and the horizontal offset l∗ between the receiving and sending coils, which is

zero for a symmetric but non-zero for asymmetric arrangements.

3.1. Test facilities

The first facility is designed to operate with the eutectic melt of GaInSn, which is liquid

at room temperature and has the kinematic viscosity ν = 3.5× 10−7 m/s2 and electrical

conductivity σ = 3.3×106 S/m [23]. Note that a temperature increase by 1◦ would cause

the electrical conductivity to drop by about 0.3%, which according to (5) would have

the same effect as a corresponding reduction in the flow velocity. The melt is driven by a

permanent magnet induction pump [20] with an adjustable flow rate. The lower part of

the loop consists of circular stainless steel tubes with inner diameter of D = 27mm and

a wall thickness of 2.6mm. The upper part consists of three independent test sections

with the length of 400mm each—all with the same inner diameter and wall thickness.

These test sections can be opened and closed independently of each other by valves.

During experiments, two test sections were closed, which ensured the cross-section-

averaged flow velocity up to V = 1.4m/s in the third test section. This maximum

velocity corresponds to Rm = 0.08 with the pipe radius taken for the length scale H .

The corresponding conventional Reynolds number Re = V D/ν ≈ 105 implies a strongly

turbulent flow. All test sections were kept completely filled with the melt. The flow rate

was independently controlled by a commercial contact-type electromagnetic flowmeter

(ABB, COPA-XL25) with 0.5% accuracy, whose operation was additionally verified by

local Ultrasonic Doppler Velocimetry measurements [21]. The commercial flowmeter

was also used to maintain a fixed flow rate by automatically controlling the pump to
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compensate for the drop in the electrical conductivity of the melt due to its ohmic

heating by the pump.

The phase-shift flowmeter was attached to the tube of the GaInSn loop by a stainless

steel clamp seen in figure 9(b), which allowed an easy installation on the tubes with a

diameter up to 34mm. The clamp arms were rounded in order to centre the tube in the

measurement gap of the flowmeter.

Additional experiments were carried out on a sodium loop [22]. Pipes and ducts

were made of stainless steel (σw = 1.3 × 106 S/m) with the cross-sections of 45 × 45

and 45 × 40mm2 (engineering tolerance ±0.2mm) in the horizontal and vertical test

sections, respectively, which could be separated from each other by valves. In order

to avoid vibrations, in this case the flowmeter was fixed on a separate frame rather

than attached to the pipe. At the operation temperature of 170◦C, whose variation was

negligible during the measurements, the kinematic viscosity and electrical conductivity

of sodium were ν = 5.5×10−7 m/s2 and σ = 8.3×106 S/m [23]. In this case, an increase

in temperature by 1◦ would cause the electrical conductivity and, thus, the apparent

flow rate to drop by about 0.4%. The flow was driven by an electromagnetic linear pump

capable to produce the flow rate up to 3 l/s, which was equivalent to the cross-section-

averaged velocity of V = 1.5m/s in the duct. This maximum velocity corresponds to

Rm = 0.35 with the duct half-width H = 22.5mm taken as the length scale. The

corresponding Reynolds number Re = 2V H/ν ≈ 1.2 × 105 again implies the flow to be

a strongly turbulent.

Both facilities were equipped with calibrated Faraday-type electromagnetic

flowmeters. These reference flowmeters were used to calibrate and test our phase-shift

flowmeter, which needs to be re-calibrated when applied to another flow configuration.

3.2. Flow-rate measurements

3.2.1. Flow-rate measurements on the GaInSn loop Figure 11 shows the phase shift

measured on the GaInSn loop depending on the cross-section-averaged velocity V in

a pipe with insulating walls. For the emitter frequencies of 600Hz and 400Hz, the

phase shift is seen to vary nearly linearly with the flow rate. The respective asymptotic

standard errors in the best linear fits are 0.3% and 0.7%. The corresponding phase

sensitivities K, defined by (21), are 0.11 and 0.095. For the harmonic wave model,

figure 4 shows that these sensitivities correspond to the observation point placed at

x/π ≈ −0.25, i.e. about an eighth of the wavelength downstream from the node. For

the emitter coil made of two straight wires according to figure 8(a), the observation

point has be located at x > 1, which is more than a half-distance between the wires

downstream from the midplane. Note that one cannot expect a quantitative agreement

with these very simple theoretical models, which are supposed to capture only the basic

effects but not particular details of the experiment.

To determine the frequency yielding the highest signal in the symmetric and

asymmetric flowmeter arrangements, the frequency response of the flowmeter was
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Figure 11. The phase shift measured on the GaInSn loop versus the flow-rate-

averaged velocity in the symmetrically adjusted case for 600Hz and 400Hz emitter

frequencies, which correspond to ω̄ = 2.85 and ω̄ = 1.90 dimensionless frequencies

when the radius of the pipe R = 13.5mm is used as the length scale. The measured

points are fitted with straight lines crossing the origin.
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Figure 12. Frequency response measured on the GaInSn loop with insulating pipe

walls for different receiving coil offsets at the averaged flow velocity of 1m/s.

investigated (see figure 12). All experiments were carried out under the same

temperature, flow rate and velocity profile of the melt. For the symmetric arrangement,

the optimal frequency was about 620Hz, which corresponds to ω̄ = 2.9. The optimal

frequency decreased to about 400Hz when the offset was increased to l∗ = 4mm.
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Figure 13. Measurements taken on the sodium loop with a symmetric flowmeter

arrangement for the coil gaps of 85mm and 75mm: (a) the frequency response at the

averaged velocity of 1.15m/s (Rm = 0.26) and (b) the phase shift versus the averaged

velocity at the emitter frequency of 75Hz. The latter is fitted with a quadratic zero-

crossing function and shown together with its linear part.

3.2.2. Measurements on the sodium loop The flowmeter used had a sending coil of 500

windings placed on the one side of the duct and two receiving coils with 1000 windings

each placed on the other side of the duct. The sending coil was fed by an alternating

current in the range from a few tenths up to 3 A. Both the sending and receiving coils

were furnished with a high-permeability laminated yoke. The coil wires were coated

with two layers of high temperature resistant polyamide (T = 260◦C). Furthermore, the

coils were encased in the ceramic material MACOR, which can withstand temperatures

up to 800◦C and, thus, protect the sending and receiving coils from the hot pipe.

Figure 13(a) presents the phase shift measured at a fixed flow rate depending on the

emitter frequency for two different withs of the gap between the sending and receiving

the coils in a symmetric arrangement (see figure 10). These results show the optimal

frequency of about 70Hz, which is much lower compared to the GaInSn case due to

the higher electrical conductivity and the larger duct width. This optimal frequency

corresponds to ω̄ = 2.5. The phase-shift measurements presented in figure 13(b) for two

different widths of the coil gap show a noticeable deviation from the linearity, which

develops with the increase of the velocity as the magnetic Reynolds number approaches

O(1). With the reduction of the gap with from 85 to 75mm, the phase sensitivity (21)

raises from K = 0.057 to K = 0.097, where the latter is close to the value of K

corresponding to the measurements on the InGaSn loop shown in figure 11.

4. Summary and conclusions

In this paper, we have presented a conceptual design of a new contactless ac induction

flowmeter for liquid metal flows based on the phase shift measurements. This flowmeter

employs the fact that the flow of a conducting liquid disturbs not only the amplitude

but also the phase distribution of an applied ac magnetic field. In order to figure
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out the basic physical effects, we considered a simple model where the liquid flow was

approximated by a solid-body motion, and the conducting medium was restricted to a

layer of finite thickness. The sender coil was approximated by by a spatially-harmonic

standing magnetic wave in one case and by a couple of straight wires placed above the

layer in another case.

In the case of an exciting magnetic field in the form of a standing harmonic wave

and no flow, the phase has a typical piece-wise constant distribution along the layer with

discontinuities at the wave nodes. These discontinuities are smoothed out as soon as

the flow sets in and a strong phase gradient appears in the vicinity of the original wave

nodes. This phase variation can be measured to determine the flow velocity. The closer

the observation point to the node, the higher the sensitivity of the phase to the velocity

but the lower the velocity at which the phase variation saturates. Thus, the higher

the sensitivity, the lower the maximal velocity, which can be measured. There is an

optimal ac frequency of the applied magnetic field which ensures maximal sensitivity of

the phase with respect to the velocity at small Rm. For the observation points below the

layer, the optimal frequency reduces with the increase of the wavelength of the applied

magnetic field. In the case of a spatially-harmonic standing magnetic wave, the phase

is independent of the vertical distance below the layer.

The phase distribution becomes more complicated when the magnetic field is

generated by a coil of finite size, which was modelled by a couple of straight wires placed

parallel to a conducting layer of finite thickness. In this case, the phase is no longer

uniform along the layer even without the motion. However, there is still a characteristic

phase jump by 180◦ at the midplane between the wires, while the field itself is symmetric

relative to this plane. The motion of the layer smooths out this discontinuity and breaks

the symmetry of the phase distribution relative to the midplane. The asymmetry of the

phase distribution caused by the motion can be used to determine the velocity. For

this purpose, we consider the phase difference between two observation points (receiver

coils) placed symmetrically relative to the midplane. The original phase non-uniformity

at Rm = 0 becomes relatively small when the observation points are placed sufficiently

close to the midplane, which is necessary for the detection of low velocities. At higher

velocities, the original phase non-uniformity becomes negligible relative to that induced

by the flow. Although the optimal dimensionless frequency is rather low (ω̄ ≈ 0.14)

for such a coil of finite size, where the exciting magnetic field is dominated by long-

wavelength modes, the decrease of sensitivity with the frequency is slow. This allows

one to work at frequencies above the optimum at ω̄ ≈ 1 without a significant loss

of sensitivity. The optimal distance of observation points (receiving coils) from the

symmetry plane depends on the velocity range to be measured. A smaller distance

ensures a higher sensitivity, which is advantageous for lower velocities, but results in a

reduced sensitivity at higher velocities because of the saturation effect.

Based on these ideas a laboratory model of such a flowmeter was built and tested

on both GaInSn and sodium loops. A nearly linear relation between the phase-shift and

the flow rate was measured on the GaInSn loop for the velocities up to 1.4m/s, which
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corresponded to small magnetic Reynolds numbers Rm . 0.1. A noticeable deviation

from the linearity was observed to develop with the increase of the velocity on the

sodium loop up to Rm ≈ 0.35. The phase-shift flowmeter was found to be a robust and

accurate measurement device. However, similar to standard eddy-current flowmeters, it

is still sensitive to the electrical conductivity and, thus, to the temperature of the liquid.
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